
	 1	

Accessors Tutorial
By	Christopher	Brooks,	Edward	A.	Lee,	and	Beth	Osyk	
Version	1.0,	Dec.	5,	2017	

Accessors are a technology for making the Internet of Things accessible to a
broader community of citizens, inventors, and service providers through open
interfaces, an open community of developers, and an open repository of
technology. Accessors enable composing heterogeneous devices and services in the
Internet of Things (IoT).

An actor is a software component that reacts to streaming input events and
produces streaming output events. An accessor is an actor that wraps a (possibly
remote) device or service in an actor interface. An accessor host is a service
running in the network or on a client platform that hosts applications built as a
composition of accessors that stream data to each other. The host is like a browser
for things. Such applications are called swarmlets in this document.

Accessors embrace concurrency, atomicity, and asynchrony. The actor model,
which governs interaction between accessors, permits accessors to execute
concurrently with segregated private data and a message-passing interface for
interaction. Internally, many accessors use asynchronous atomic callbacks
(AAC) to invoke remote services and handle responses asynchronously and
atomically.

Accessors are defined in a JavaScript file that includes a specification of the
interface (inputs, outputs, and parameters) and an implementation of the
functionality (reactions to inputs and/or production of outputs). Any JavaScript
file that conforms with the accessor specification defines an accessor class.

The TerraSwarm accessor library provides a collection of example accessors. This
library is maintained via an SVN repository that permits many contributors to add
accessors to the library.

An instance of an accessor is created by a swarmlet host that evaluates the
JavaScript in the accessor definition. At this time, there are at least three accessor
hosts compatible with accessor specification 1.0:

• A browser host, which allows inspection of the accessor, and if the
accessor is suitable for execution in a browser, interactive invocation of
the accessor.

• A Node.js host, an interactive program that runs in Node.js that allows
instantiation and execution of accessors.

• CapeCode, which supports composition of accessors with visual block
diagrams and provides a large library of actors that the accessors can
interact with.

	 2	

1. Table of Contents

2.	 Minimal	Accessor	Example	..	4	

3.	 Interface	Definition	..	4	
3.1.	Inputs	...	5	
Getting	Inputs	...	6	
Sending	to	Inputs	..	6	
Setting	the	Default	Value	of	an	Input	..	6	
Input	Handlers	..	7	

3.2.	Outputs	..	8	
Sending	to	Outputs	...	8	

3.3.	Parameters	..	9	
Getting	Parameters	..	10	
Setting	Parameters	..	10	

3.4.	Implement	..	10	
3.5.	Extend	..	11	
Functions	...	11	
2.	Input	Handlers	..	12	
Inputs,	Outputs	and	Parameters	..	12	
Accessing	Base	Variables	in	a	Derived	Accessor	..	12	

3.6.	Data	Types	...	13	
4.	 Accessor	Documentation	...	13	

5.	 Functionality	..	14	
5.1.	Action	Functions	..	15	
fire()	...	16	
initialize()	..	16	
Input	handlers	...	16	
latestOutput(name)	...	16	
provideInput(name,	value)	..	16	
react()	..	16	
setParameter(name,	value)	..	16	
setup()	...	16	
wrapup()	..	16	

5.2.	Discussion	..	16	
5.3.	Top-Level	JavaScript	Functions	..	17	
Module	Dependencies	..	17	
Delaying	Execution	..	17	
Error	Handling	..	18	
Getting	Resources	..	18	

5.4.	Built-In	JavaScript	Modules	...	19	
Console	...	19	
events	..	20	

6.	 Composition	...	22	

7.	 Execution	...	23	
8.	 http-client	Module	..	24	
8.1.	API	...	24	

	 3	

8.2.	Usage	..	25	
8.3.	Options	..	25	
8.4.	IncomingMessage	..	26	
8.5.	ClientRequest	..	26	
8.6.	Browser	Considerations	..	27	
Cross-Origin	Requests	..	27	
JSON	with	padding	(JSONP)	...	27	
APIs	and	Libraries	..	28	

	

	

	 4	

2. Minimal Accessor Example
A minimal accessor that takes a numeric input, doubles it, and sends the result to
an output is given below:

exports.setup = function () {
 this.input('input');
 this.output('output');
};
exports.initialize = function () {
 var self = this;
 this.addInputHandler('input', function () {
 self.send('output', self.get('input') * 2);
 });
};

This accessor has two parts, an interface definition in the setup() function, and a
specification of the function to be performed. The function to be performed is given
by an input handler function.

Notice the commonly used JavaScript idiom, where the value of the variable this is
captured in a variable called self (this name is arbitrary), and then within the
callback function, self is used instead of this. In JavaScript, when a function is
invoked, the value of the variable this is the object on which the function is
invoked. The setup and initialize functions are invoked by the host on the
accessor, which has functions input, output, etc., defined. But the input handler
function is not assured of being invoked on the accessor. Any callback function that
the accessor defines, such as the function passed to addInputHandler above,
should be written in such a way that it will work no matter what object the host
invokes it on. A browser host, for example, may invoke it with this equal to the
window object. To understand the this keyword in Java, see

▪ http://www.quirksmode.org/js/this.html
▪ http://javascriptissexy.com/understand-javascripts-this-with-clarity-and-master-it/
▪ https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

More interesting examples are found on the TerraSwarm accessor repository.

3. Interface Definition
An accessor interface specifies what it requires of an accessor host and what its
inputs, outputs, and parameters are. An accessor interface definition may include
the following elements in the accessor specification file:

• require: Modules required by the accessor.

• An exports.setup() function that can invoke the following functions:

o input: Specify an input to the accessor.

o output: Specify an output from the accessor.

o parameter: Specify a parameter for the accessor.

	 5	

o implement: Declare that the accessor implements another
interface.

o extend: Declare that the accessor extends another accessor.

Inputs, outputs, and parameters may optionally have specified data types. The
exports.setup() function may also invoke instantiate() and connect() as
explained below in the composition section. All of the above except require() are
functions of the accessor, so they should be invoked with the prefix this as
illustrated above. The require() function, on the other hand, is a top-level function
that can be invoked from anywhere. See Top-Level Functions below for a complete
list of such functions.

3.1. Inputs	

An accessor may define any number of inputs in the body of its setup() function
using:

input(<string> name, [options]):
Create an input with the specified name and options.

For example:
 exports.setup = function() {
 this.input('bridgeIPAddress', {
 'type':'string',
 'value':'localhost'
 });
 }

The input() function takes one or two arguments, a name (a required string,
recommended to be camelCase with a leading lower-case character) and an object
giving any of the options:

type The data type of the input. If this is not specified, then any valid JavaScript value
may be provided as an input. If it is specified, it must be one of the valid data
types shown below.

value A default value for the input. Specifying a default value ensures that get() will
not return null (see below). In the Cape Code Host, an input will be a Ptolemy
PortParameter if the input has a value option.

options An array of possible values for this input. A user interface may list these possible
values, and a host may restrict the values to be one of these values.

visibility A hint to the host of whether this input should be made visible to casual users.
This is a string that is one of "full", "none", "expert", or "notEditable", meaning
"full visibility", "no visibility", "expert visibility", or "visible, but not editable". This
option is useful for accessors that extend other accessors but do not want to
make the inputs of the base accessor visible in the derived accessor.

The name is required to be distinct from other inputs, outputs, and parameters. It
may match the name of an input in a base accessor (specified by either extend() or
implement()), in which case the options will override those specified in the base.

	 6	

Getting	Inputs	

The current value of an input may be retrieved in the accessor's JavaScript code
using the get() function, as in the following example:

 var address = this.get('bridgeIPAddress');

The get() function takes one argument, the input name (as a string). If the input
definition includes a value option, then get() will not return null unless the accessor
has specifically been sent a null. If you call get() before the accessor host has
provided any input value, then the returned value will be that given in
the value option. Subsequently, the returned value will be the most recent value
provided by the accessor host.

If no value option is given, then get() will return null if called before the host has
provided an input. In addition, get() may return null if there is no current input value
provided by the host. This enables the host to fire the accessor while providing
some and not all of the inputs. Thus, it is good programming practice to test the
return value of get() for null if no value attribute is provided.

Sending	to	Inputs	

An accessor may use the send() function to send values to its own inputs. Typically,
this would be done in a callback function that is triggered by some external event.
It could also be done in accessor that extends another accessor and wishes to set
the value of an input in the base accessor. A side effect of sending a value to its
own input port is to trigger an input handler given using addInputHandler().

For example, suppose that the following line is executed in a callback:
 this.send('bridgeIPAddress', '127.0.0.1');

This will send the string "127.0.0.1" to the bridgeIPAddress input. After the callback
function has completed execution, the accessor host will call any input handler that
has been registered for this port using addInputHandler(). In the body of the handler,
the accessor can call get() to retrieve the value of the input.

If an accessor sends a value to its own input in an input handler or in the fire()
function, the updated value of that input will not be available until the next reaction.
An input value remains constant throughout a reaction.

If you send a null value to an input, then get() on that input will return null on the
next invocation, even if a value attribute is given for that input.

Setting	the	Default	Value	of	an	Input	

As shown above, if a 'value' option is given when defining an input, then the input
will have a default value. You can change that default value (or add one to an input
that did not previously have one) using the setDefault() function. For example:

 this.setDefault('bridgeIPAddress', '127.0.0.1');

Unlike using send(), however, this will not trigger execution of any input handler.
Also unlike send(), the host may treat this new default value as a persistent value,
to become a permanent default, even in future executions of the same swarmlet.

	 7	

Setting the default in this way can be useful in an accessor that extends another,
but wishes to change the default value provided by the base accessor.

Input	Handlers	

• <handle> addInputHandler(<string> input, function, [arguments]): Specify a function
to invoke when the input with name input (a string) receives a new input
value. If additional arguments are specified, those will be passed to the
function when it is invoked. A function may be added more than once,
possibly with different arguments, in which case it will be invoked more
than once. If the first argument is null, or if no name argument is given
and the first argument is a function, then the specified function will be
invoked when any new input arrives. This function returns a handle that
can be used to call removeInputHandler(). Note that the handler function is
not limited to observing the input that triggers its execution. It can call
get() on any input. See Input.

• removeInputHandler(handle): Remove the callback function with the specified
handle (returned by addInputHandler()).

Example:
exports.initialize = function() {
 // Specify a function to invoke when a new input arrives on myInput.
 this.addInputHandler("myInput", function () {
 ...
 });
 // Specify a function to invoke when a new input arrives on any
input.
 this.addInputHandler(function() {
 ...
 });
};

Note that when the function is invoked, it will be invoked in a context where 'this'
will be some arbitrary object as determined by the host. If you need to invoke
accessor functions (such as get or send) in your handler, then you will need to
capture the value of 'this' using the common JavaScript idiom, as illustrated in this
example:

exports.initialize = function() {
 // Capture the value of 'this':
 var self = this;
 this.addInputHandler("myInput", function () {
 self.send('outputName', 'hello world');
 });
};

Alternatively, you can bind the function to 'this' as follows:
exports.initialize = function() {
 this.addInputHandler("myInput", myFunction.bind(this));
};
function myFunction() {
 this.send('outputName', 'hello world');
}

	 8	

Binding the function ensures that whenever it is invoked, from any context, the
value of 'this' will the value specified in the binding.

3.2. Outputs	

An accessor may define any number of outputs in the body of its setup() function
using

• output(<string> name, [options]): Create an output with the specified name and
options.

For example:
 exports.setup = function() {
 this.output('price', {
 'type':'number'
 });
 }

The output() function takes one or two arguments, a name (a required string,
recommended to be camelCase with a leading lower-case character) and an object
with any of the following options:

type The data type of the output. If this is not specified, then any valid JavaScript
value may be sent to the output. If it is specified, it must be one of the
valid data types.

spontaneous true or false. A spontaneous output is produced by an asynchronous callback
rather than as a response to an input. Every directed cycle in a connectivity
graph must contain at least one spontaneous output or there will be a
deadlock due to a causality loop. A spontaneous output port must both be
declared and have input handler invoke setTimeout(). See Action
Functions and Spontaneous.

The name is required to be distinct from other inputs, outputs, and parameters. It
may match the name of an output in a base accessor (specified by either extend()
or implement()), in which case the options will override those specified in the base.

Sending	to	Outputs	

An accessor may use the send() function to send values via its output ports. This
may be done in a callback function, such as a function passed to setTimeout (see Top-
Level Java Script Functions) or addInputHandler(see). For example, suppose that the
following line is executed in a callback:

 this.send('price', 42);

This will send the number 42 to the price output. If you send a null value to an
output, and that output is connected to an input x of a downstream accessor, then
that accessor's input handler will get null when it invokes get('x').

Note that if the output data type is JSON, then the JavaScript value will be
converted to a JSON string before sending. This can be confusing. Specifically, if
you want to send, say, {"foo": 42}, then you should do

	 9	

 this.send('output', {"foo": 42});

and not
 this.send('output', '{"foo": 42}');

In other words, do not convert your object to a JSON string yourself.

If you call send() multiple times before the receiving accessor has a chance to react
to the data, then the data will be queued and will cause multiple reactions of the
downstream accessor, one for each send().

3.3. Parameters	

An accessor may specify parameters in the body of the setup() function by
invoking:

• parameter(<string> name, [options]): Create the parameter. Options are
optional.

A parameter, unlike an input, is not expected to change value during the execution
of a swarmlet.

For example, the following accessor will send the value of the foo parameter to its
output bar once:

 exports.setup = function() {
 this.parameter('foo', {'value':'y', 'type':'string'});
 this.output('bar');
 }
 exports.initialize = function() {
 this.send('bar', this.getParameter('foo'));
 }

The parameter() function takes one or two arguments, a name (a required string,
recommended to be camelCase with a leading lower-case character) and an object
with any of the following options:

type The data type of the parameter. If this is not specified, then any valid JavaScript
value may be provided as a value. If it is specified, it must be one of the
valid data types.

value The default value for the parameter. Specifying a default value ensures
that getParameter() will not return null (see below).

options An array of possible values for this parameter. A user interface may list these
possible values, and a host may restrict the values to be one of these values.

visibility A hint to the host of whether this parameter should be made visible to casual
users. This is a string that is one of "full", "none", "expert", or "notEditable",
meaning "full visibility", "no visibility", "expert visibility", or "visible, but not
editable". This option is useful for accessors that extend other accessors but do
not want to make the parameters of the base accessor visible in the derived
accessor.

	 10	

The name is required to be distinct from other inputs, outputs, and parameters. It
may match the name of a parameter in a base accessor (specified by either
extend() or implement()), in which case the options will override those specified in
the base.

Getting	Parameters	

The current value of a parameter may be retrieved in the accessor's JavaScript
code using the getParameter() function, as in the following example:

 var address = this.getParameter('bridgeIPAddress');

The getParameter() function takes one argument, the parameter name (as a string).

If no value option is given, then getParameter() will return null if the host has not
provided a parameter value.

Setting	Parameters	

The current value of a parameter may be set in the accessor's JavaScript code
using the setParameter() function, as in the following example:

 this.setParameter('bridgeIPAddress', '128.32.12.0');

This might be done, for example, in an accessor that extends another to change the
default value of the parameter.

3.4. Implement	

An accessor may specify that it implements an interface or the interface of another
accessor in its setup() function by invoking:

• implement(<string> name): Implement an interface with the specified
name.

This has the effect of executing the setup() function of the specified interface or
accessor, so any inputs, outputs, and parameters defined by the specified interface
or accessor will also be inputs, outputs, and parameters of this accessor.

For example, suppose an interface MyInterface has the following:
 exports.setup = function() {
 this.parameter('foo', {'value':42});
 this.output('bar');
 }

Then if an accessor specifies the following:
 exports.setup = function() {
 this.implement('MyInterface');
 }

then it will also have a parameter named 'foo' and an output named 'bar'. A derived
accessor may modify the options of the interface specification. For example,

	 11	

 exports.setup = function() {
 this.implement('MyInterface');
 this.parameter('foo', {'value':43});
 }

modifies the default value of 'foo' to 43.

3.5. Extend	

An accessor may specify that it extends another accessor in its setup() function by
invoking:

• extend(<string> name): Extend an accessor with the specified name.

This has the effect of implementing the interface of the other accessor, as
if implement had been invoked, but in addition, it inherits all exported fields and
functions of the specified accessor. Specifically, the exports property of the base
accessor becomes the prototype of the exports property of the extending accessor.

For example, suppose a base accessor MyBase has the following:
 exports.initialize = function() {
 console.log('Initialize base accessor.');
 }

Then if an accessor specifies the following:
 exports.setup = function() {
 this.extend("MyBase");
 }

then it will inherit the exports.initialize() function of the base accessor.

Functions	

An accessor may override any exported function of the base accessor by simply
defining a function with the same name. Moreover, the override function can invoke
the overridden function as in the following example:

 exports.initialize = function() {
 exports.ssuper.initialize.call(this);
 console.log('Initialize extending accessor.');
 };

When the initialize() function of the extended accessor is invoked, then the
following will appear on the console:

 Initialize base accessor. Initialize extending accessor.

Notice that the exports property has a ssuper property that refers to the exports
property of the base accessor, which is also the prototype of the exports property
of the extending accessor. Thus, ssuper refers to the prototype.

Notice further that the initialize function is invoked using initialize.call(this).
This ensures that while the base accessors initialize function is executing, the
variable "this" refers to the extending accessor.

	 12	

2.	 	Input	Handlers	

An accessor can also override input handler functions. Suppose that a Base
accessor has the following:

exports.inputHandler = function() {
 // Send true to output.
 this.send('output', true);
}
exports.initialize = function() {
 this.addInputHandler('input', this.exports.inputHandler.bind(this));
}

Notice that this.exports.inputHandler not exports.inputHandler is added as an
input handler. Hence, a derived accessor that extends this base can override the
input handler with the following code:

exports.inputHandler = function() {
 // Send false to output instead.
 this.send('output', false);
}

When the initialize function of the base accessor is invoked, it will actually add the
derived accessor's handler rather than its own because "this" will refer to the
derived accessor. In an instance of Derived, when an input arrives on 'input', the
accessor will send false to 'output', not true as in the Base accessor.

If instead we had written in the base accessor
 this.addInputHandler('input', exports.inputHandler.bind(this));

then the override would not succeed. As with all JavaScript
functions, exports.inputHandler is resolved in the scope in which initialize() is
defined, not in the scope in which it executes. Therefore, exports.inputHandler
refers to the 'inputHandler' property of the Base accessor. This latter pattern can be
used to prevent extended accessors from overriding certain behavior.

Inputs,	Outputs	and	Parameters	

A derived accessor may modify the options of the inputs, outputs, and parameters
of the extended accessor. For example, if MyBase has a parameter named foo, then

 exports.setup = function() {
 this.extend('MyBase');
 this.parameter('foo', {'value':43});
 }

modifies the default value of 'foo' from whatever it is in the base to 43.

Accessing	Base	Variables	in	a	Derived	Accessor	

A derived accessor may read and write the values of variables in the parent
accessor if the parent accessor declares the variables using exports. For example, if
the MyBase accessor has:

exports.socket = null;

Then derived accessors may refer to that variable with

	 13	

exports.ssuper.socket

For example UDPSocketListener is extended by Moto360GestureListener and
Moto360GestureListener uses exports.ssuper.socket.

3.6. Data	Types	

Accessor parameters, inputs, and outputs follow a principle called gradual typing. If
the XML definition of the input or output includes no type attribute, then any
JavaScript type is acceptable. At this extreme, types are only checked at run time.
But an accessor may constrain the type of an input, output, or parameter by
including a type field.

The available types are still under discussion, but they will include at least:

• boolean: true or false

• int: an integer number

• number: a JavaScript number (integer or floating point)

• string: a string

• JSON : a JavaScript value or object that has a JSON representation. The
object will be converted to a JSON string by the send() function, and
converted back to a native JavaScript value or object by the get() or
getParameter() function.

For any of these data types except boolean, you can define a finite number of
possible values (an enumeration), as in the following example:

parameter('name', {'type':'string', 'value':'a', 'options':['a', 'b', 'c']
});

Giving an options option defines the allowed values.

4. Accessor Documentation
Documentation and metadata such as author, version, etc., are given using JSDoc
tags in comments in the JavaScript accessor specification file. For example, the
above minimal accessor might be documented as follows:

/** Double the value provided at *input* and send to *output*.
 * @accessor Minimal
 * @author Edward A. Lee (eal@eecs.berkeley.edu)
 * @input {number} input A numeric input.
 * @output {number} output The output for the doubled value.
 */

The main body of the documentation is given after the first /** in the accessor
specification file. It can include any formatting commands supported by Markdown.
For example above, *input* will be rendered in italics. The documentation may
include any of the following tags, in alphabetic order:

	 14	

• @accessor Name: The name of the accessor. This should be capitalized and

should match the name of the accessor file (without the .js extension). This
is an accessor-specific tag used by the JSDoc Ptdoc Plugin

• @author Author: The author(s) of the accessor. This is arbitrary text and
may optionally include contact information. See the JSDoc @author
documentation.

• @input {type} name: A description of the input with the specified name and
an optional type. If the input has a default value, that should be explained in
the text. See JSDoc @type tag documentation for formatting of the type. This
is an accessor-specific tag used by the JSDoc Ptdoc Plugin.

• @module Name: The name of the accessor again, if the accessor is also
available as a module. This is an accessor-specific tag used by the JSDoc
Ptdoc Plugin.

• @output {type} name: A description of the output with the specified name
and an optional type. This is an accessor-specific tag used by the JSDoc
Ptdoc Plugin.

• @parameter {type} name: A description of the parameter with the specified
name and an optional type. The default value should be explained in the text,
if given. This is an accessor-specific tag used by the JSDoc Ptdoc Plugin.

• @version version: A version designator for the accessor. For example, if the
accessor is stored under an SVN version control system, this might specify
$$Id:$$, which SVN will automatically replace with the current version
number. This is an accessor-specific tag used by the JSDoc Ptdoc Plugin.
Note that to avoid issues with expanding $, we use $$Id$$ instead of Id.

5. Functionality
In addition to an interface, an accessor may have some functionality given in
JavaScript. The script can define local state variables used by the accessor and
functions to be invoked by the swarmlet host. The accessor's script will be
executed in an accessor context provided by the host. The context provides some
built-in functions and modules that are available for accessors to use. A swarmlet
host must provide all the built-in functions and modules and may provide some or
all of the optional modules. The set of required functions and modules is
deliberately small, so that implementing a basic accessor host is easy.

Accessors run in a JavaScript host that provides a standard set of functions and
modules that enable the accessor to interact with devices and services.

• Index of functions for quick reference.

• Action Functions: A set of functions that an accessor may define that are
invoked by the host to execute a swarmlet. The swarmlet host will always

	 15	

invoke these in such a way that the variable this is the accessor itself,
which defines the functions such as input

• Top-Level JavaScript Functions: These functions enable the accessor to
get inputs and produce outputs. They also provide a small set of basic
mechanisms that are commonly found in a JavaScript environment.

• Built-In JavaScript Modules: All accessor hosts are required to support all
built-in modules. Modules conform with the CommonJS Module
Specification.

• Optional JavaScript Modules: More sophisticated capabilities that may or
may not be supported by a particular accessor host. These modules must
also conform with the CommonJS Module Specification.

• JSDoc, auto-generated code documentation.

5.1. Action	Functions	

An accessor may define some number of action functions that are invoked by the
host as described below. The only required function is the setup() function. An
accessor may implement any subset of the rest. These functions are made available
to the host by setting them as fields of the exports object in the accessor script with
the corresponding name. For instance, the initialize() function is exposed in the
accessor source code by setting the exports.initialize field equal to the desired
function in the script. For example,

 exports.initialize = function() {
 console.log('Hello World!');
 }

An execution of an accessor consists of:

• Loading the accessor script, executing any top-level statements, and
invoking the setup() function.

• Invoking the initialize() function, if it is defined.

• Executing the accessor, which performs the following actions repeatedly:

o Invoke any timeout callbacks whose timeout matches current time
of the host;

o Invoke any input handlers that have been added to inputs that
have new data;

o If any input has new data, invoke any generic input handlers that
have been added;

o Invoke the fire() function, if it has been defined.

• Invoking the wrapup() function of the accessor.

	 16	

fire()	

If provided, the host will invoke this function when any new input is provided, or if
there are no inputs at all, then whenever the host chooses to invoke it.

initialize()	

This function, if provided, will be invoked once by the host when the application
using the accessor starts up, and possibly again each time the swarmlet is re-
initialized. The accessor may get any inputs that have default values, read
parameters, and initialize state variables. It may also send outputs, but note that
downstream accessors will not see this data in their initialize function. They will see
it in an input handler, if they have registered one.

Input	handlers	

An input handler is a function that is invoked when a new input arrives. See Input
Handlers.

latestOutput(name)	

Return the most recent output sent via the named output.

provideInput(name,	value)	

Provide the specified input with the specified value.

react()	

React to any provided inputs by invoking any associated input handlers and also
invoking the fire() function, if there is one.

setParameter(name,	value)	

Set the specified parameter to have the specified value.

setup()	

Set up the actor interface, defining inputs, outputs, and parameters.

wrapup()	

If provided, the host will invoke this function once when the application shuts down.
This function should not send outputs.

5.2. Discussion	

With these action functions, there is a variety of patterns of accessor behavior:

• Event reactor: An accessor provides input handlers for one or more
inputs. In these handlers, it may read inputs using get(), update state
variables, and/or send outputs.

• Spontaneous accessor: The accessor sends outputs at times of its
choosing, not in reaction to inputs. For example, it may send an output in

	 17	

a function invoked after a timeout. The accessor can do this by
calling setTimeout(function, time) in initialize(), for example. It may
also send outputs in any callback function, for example one that handles a
response to an asynchronous HTTP request or to a timeout. See Output.

Note that it is an error to send outputs before the host has invoked initialize or after
it has invoked wrapup() (before the next initialize()). Therefore, an accessor
should use its wrapup() function to, for example, cancel any pending timeouts or
event handlers.

Note also that action functions are called "functions" even though they are not
mathematical functions, because JavaScript calls them functions. They may have
side effects.

5.3. Top-Level	JavaScript	Functions	

This section describes the top-level JavaScript functions required to be provided by
a swarmlet host. These are available to be invoked in any context by an accessor.
Their invocation is prepended with this.

Module	Dependencies	

• require(<string> @accessors-modules/module-name): Load the specified module by
name (a string) and return a reference to the module. The reference can
be used to invoke any functions, constructors, or variables exported by
the module.

Delaying	Execution	

• <handle> setInterval(function, milliseconds): Set the specified function to execute
after specified time in milliseconds and again at multiples of that time,
and return a handle.

• <handle> setTimeout(function, milliseconds): Set the specified function to execute
after specified time in milliseconds and return a handle. If the interval is
zero, then the specified function will be invoked in the next reaction,
which will occur immediately after the conclusion of the current reaction.
If several setTimeout requests have an interval of zero, then they will be
invoked in successive reactions in the order in which they have been
requested.

• clearInterval(handle): Clear a timer interval action with the
specified handle (see setInterval()).

• clearTimeout(handle): Clear a timeout with the
specified handle (see setTimeout()).

For both setInterval() and setTimeout(), if additional arguments are provided
beyond the first two, then those arguments are passed to the function when it is
called.

	 18	

Also for both, if you wish for the specified function to send data to outputs or inputs
or to get data from inputs, then you will need to bind the function to the accessor
instance. For example,

var handle;
exports.initialize = function () {
 handle = setInterval(produce.bind(this), 1000);
};
function produce() {
 this.send('hello');
};

When initialize() is called, 'this' is the accessor instance. Binding the callback
function to 'this' ensures that when it is called, 'this' will again be the accessor
instance in this.send('hello'). You can alternatively use the following common
JavaScript idiom:

var handle;
exports.initialize = function () {
 var self = this;
 handle = setInterval(function() {
 self.send('hello');
 }, 1000);
};

Here, the variable self captures the value of 'this' when initialize() called, making
it available within the anonymous callback function.

After the specified function is called, the f i re() function of the accessor will be called,
if it exists. If the specified function is null, then only the f i re() function of the
accessor will be called.

Error	Handling	

• error(str ing): Report an error with the specified message. This should be
used by an accessor to report non-fatal errors, where it is OK to continue
executing. For fatal errors, throw an exception.

Getting	Resources	

• getResource(uri, options, t imeout): Get a resource, which may be a relative
file name or a URL, and return the value of the resource as a string.
Implementations of this function will likely restrict the locations from
which resources can be retrieved. A recommended policy for swarmlet
hosts is to at least permit http and https accesses. Local files may be
allowed, if for example they are given as relative file names relative to be
in the same directory where the swarmlet model is located or in a
subdirectory.

The options parameter may have the following values:

§ If the type of the options parameter is a Number, then it is assumed to be
the timeout in milliseconds.

§ If the type of the options parameter is a String, then it is assumed to be the
encoding, for example "UTF-8". If the value is "Raw" or "raw" then the data

	 19	

is returned as an unsigned array of bytes. The default encoding is the default
encoding of the system. In CapeCode, the default encoding is returned by
Charset.defaultCharset().

§ If the type of the options parameter is an Object, then it may have the
following fields:

§ encoding {string} The encoding of the file, see above for values.

§ returnURI {string} If true, then return the URI of the resource instead
of the contents. The default is false.

§ timeout {number} The timeout in milliseconds

If the callback parameter is not present, then getResource() will be synchronous
read like Node.js's fs.readFileSync().

If the callback argument is present, then getResource() will be asynchronous
like fs.readFile().

5.4. Built-In	JavaScript	Modules	

The following objects provide bundles of functions and should be built in to any
accessor host.

§ console: Provides various utilities for formatting and displaying data.

§ events: Provides an event emitter design pattern (requires util).

§ util: Provides various utility functions.

Console	

The console module is a JavaScript module for outputting messages. This
implementation is designed to be compatible with the console module in Node.js. It
requires the util module. Because this is a built-in module for accessors that
subclass JSAccessor, there is no need to specify a requires tag in the interface
specification. A simple use of the module in an accessor might look like this:

 exports.fire = function() {
 var value = get(input);
 console.log('Input value is: %d', value);
 }

The functions provided in this module are:

§ console.log(...): Print a message. This may go to stdout or to any other
output appropriate for the particular accessor host. The first argument can be
a printf-style formatting string, followed by arguments to insert into the
output, as in the example above. If the first string does not contain any
formatting elements, then util.inspect() is applied to all arguments to convert
them to strings.

§ console.info(...): Same as log().

§ console.error(...): Same as log(), but the message is prefixed with
"ERROR: " and sent to stderr (or some other suitable destination).

	 20	

§ console.warn(...): Same as log(), but the message is prefixed with
"WARNING: " and sent to stderr (or some other suitable destination).

§ console.dir(object, options): Apply util.inspect() to the specified object
(possibly with options) and then report as done by log(). The optional options
argument is an object that may contain the following fields:

§ showHidden - if true then non-enumerable properties will be shown as
well. Defaults to false.

§ depth - tells inspect how many times to recurse while formatting the
object. Defaults to 2. Use null to get unbounded depth.

§ colors - if true, then the output will be styled with ANSI color codes.
Defaults to false.

§ customInspect - if false, then custom inspect() functions defined on
the objects being inspected won't be called. Defaults to true.

§ console.time(label): Record the current time using the specified label for
use by a later call to timeEnd().

§ console.timeEnd(label): Log the time elapsed since the last call to
time(label) that gave the same label (using the log() function to report the
time).

§ console.trace(...): Send a stack trace to stderr or some other suitable
output prefixed by "TRACE: " and any supplied message formatted as with
the log() function.

§ console.assert(assertion, message): If the first argument is not "truthy",
then throw an error that includes a (formatted) message given by the
remaining arguments.

events	

This module, which is borrowed from Node.js, contains a single class definition,
EventEmitter. A typical usage pattern is to inherit it. For example:

 var events = require('events');
 var util = require('util');
 function MyClass() {
 // Invoke the event emitter constructor.
 events.EventEmitter.call(this);
 util.log('instantiated');

 }
 util.inherits(MyClass, events.EventEmitter);
 var instance = new MyClass();
 instance.on('ping', function() {

util.log('ping');
 });

 instance.emit('ping');

This code defines a class that subclasses EventEmitter. As a consequence, the class
inherits the functions on() and emit(). The first of these functions defines what
action to take when a named event is emitted. The last two lines of the code above

	 21	

define the reaction to an event named 'ping' and then emit the event. The result of
executing this code is, for example:

 2 May 14:16:33 - instantiated 2 May 14:16:33 - ping

The events module is defined more fully at https://nodejs.org/api/events.html. It
includes the following:

§ Class: events.EventEmitter

§ emitter.addListener(event, listener)

§ emitter.on(event, listener)

§ emitter.once(event, listener)

§ emitter.removeListener(event, listener)

§ emitter.removeAllListeners([event])

§ emitter.setMaxListeners(n)

§ EventEmitter.defaultMaxListeners

§ emitter.listeners(event)

§ emitter.emit(event[, arg1][, arg2][, ...])

§ Class Method: EventEmitter.listenerCount(emitter, event)

§ Event: 'newListener'

§ Event: 'removeListener'

The util module is a JavaScript module containing various utility functions. This is
intended to be compatible with the util module in Node.js. Because this is a built-in
module for accessors that subclass JSAccessor, there is no need to specify
a requires tag in the interface specification. A simple use of the module in an
accessor might look like this:

 exports.fire = function() {
 var value = get(input);
 util.log('Received an input.');
 }

The functions provided in this module are:

§ util.format(format, [...])

§ util.debug(string)

§ util.error([...])

§ util.puts([...])

§ util.print([...])

§ util.log(string): Output a message with timestamp on stdout.

§ util.inspect(object, [options])

§ util.isArray(object)

§ util.isRegExp(object)

	 22	

§ util.isDate(object)

§ util.isError(object)

§ util.pump(readableStream, writableStream, [callback])

§ util.inherits(constructor, superConstructor)

6. Composition
An accessor may contain other accessors. To instantiate an accessor within another,
use instantiate, as illustrated in the following example:

exports.setup = function() {
 var gain = this.instantiate('TestGain', 'test/TestGain');
 gain.setParameter('gain', 4);
}

This example instantiates a contained accessor test/TestGain, which is a test
accessor from the TerraSwarm library that simply multiplies its input by a constant.
It has a gain parameter, which in this case is being set to the constant 4. It could
also be set to the parameter value of the composite using getParameter() (see
parameter).

Any contained accessor will be initialized and wrapped up whenever its container is
initialized and wrapped up (see execution below). But contained accessors are most
useful if their inputs and outputs are connected to other contained accessors or to
inputs and outputs of the container accessor. Connections are made using the
connect function, as illustrated by the following example:

exports.setup = function() {
 this.input('input', {'type':'number', 'value':0});
 this.output('output', {'type':'number'});
 var gain = this.instantiate('TestGain', 'test/TestGain');
 gain.setParameter('gain', 4);
 var adder = this.instantiate('TestAdder', 'test/TestAdder');
 this.connect('input', adder, 'inputLeft');
 this.connect('input', gain, 'input');
 this.connect(gain, 'scaled', adder, 'inputRight');
 this.connect(adder, 'sum', 'output');
}

This connects two contained accessors (an instance of test/TestGain and one of
test/TestAdder) as shown here:

	 23	

7. Execution
An accessor is executed by a swarmlet host, a program that includes a JavaScript
interpreter and provides the script with a collection of library functions and
modules. All interaction between the accessor script and the network, devices, the
file system, and other accessors is mediated by these libraries. Hence, the host
controls what the accessor script has access to. Not all hosts can execute all
accessors. The browser host, for example, limits network and file system access
according to a browser security policy. When an accessor is instantiated by a host,
the host checks compatibility and reports if the accessor is incompatible with that
host.

The life of an accessor has four phases:

§ instantiation: The host reads and executes the JavaScript file defining the
accessor. If in that file an exports.setup function is defined, then that
function will be executed in this phase.

§ initialization: If the accessor defines an exports.initialize function, then
that function is invoked in the initialization phase. This marks the beginning
of the execution of a swarmlet.

§ reaction: The accessor reacts to inputs and callbacks, as explained in detail
below.

§ wrapup: If the accessor defines an exports.wrapup() function, then that
function is invoked in the wrapup phase. This marks the end of the execution
of the swarmlet using the accessor.

The host instantiates an accessor exactly once. After instantiation, execution of the
accessor consists of initialization, zero or more reactions, followed by wrapup. This
execution pattern may be repeated multiple times.

A reaction of an accessor is triggered by the swarmlet host. When the host does
this depends on the host. The Browser Host for example, will trigger a reaction
when the user clicks a button labeled 'react to inputs' on a web page displaying the
accessor. The Node Host will trigger a reaction when the script being executed
invokes the react() function on the accessor instance. The Cape Code Host will
trigger a reaction when an input to the accessor arrives.

A reaction performs exactly the following actions, in order:

§ Invocation of any timeout callbacks, if the time is appropriate.

§ Invocation of any registered handlers for any input that has received new
data. These handlers will be invoked first in the order in which inputs are
defined, and then, if an input has multiple handlers, in the order in which the
handlers were added.

§ Invocation of any registered handlers for new input data that the accessor
has sent to itself. An accessor will continue checking for self-provided new
input data until none is available.

	 24	

§ Invocation of any handlers that have been registered to be invoked when any
new input arrives. These handlers will be invoked in the order in which they
were added.

§ Reaction of any contained accessors that have been provided with inputs
(see below).

§ If the accessor defines an exports.fire function, then that function is
invoked now.

In the above, "new input" means input that has arrived from an external source
since the last reaction. Inputs sent to the accessor by itself are handled in the same
reaction.

A host is free to invoke a reaction whenever it chooses after it has invoked
initialize() and before it has invoked wrapup(), even if there are no new inputs.
Hence, anything the accessor does in its fire() function should make sense
regardless of whether new inputs have been provided.

When invoking reactions of contained accessors, the swarmlet host follows a
specific deterministic model of computation. First, contained accessors are assigned
a priority based on their position in the graph of connected accessors. An accessor
A with an output connected to accessor B will have a higher priority than B, unless
the output of A is declared to be spontaneous (see output). The host will invoke
reactions in priority order, ensuring that any accessor that feeds data to another
accessor will react first.

An accessor may invoke stop which will invoke wrapup() on any contained
accessors and then stop the host.

8. http-client Module
A host may provide some or all of a suite of optional modules. Here, we describe
just one of those as an illustrative example, the http-client module. This is a library
for making HTTP requests.

8.1. API	

§ get(url | options, responseCallback): Make an HTTP GET request and call the callback
when the request has been satisfied.

§ post(url | options, responseCallback): Make an HTTP POST request and call the
callback when the request has been satisfied.

§ put(url | options, responseCallback): Make an HTTP PUT request and call the callback
when the request has been satisfied.

§ request(url | options, responseCallback): Make an HTTP request and call the callback
when the server has responded.

	 25	

In all cases, the first argument is either a string with a URL or a JavaScript object
with a number of fields defined below. Also, in all cases, the responseCallback function,
if provided, will be called when the request has been fully satisfied.
The responseCallback function will be passed one argument, an instance of
the IncomingMessage class, defined below. The difference between request() and the
other functions is that the former only begins the interaction with the server,
whereas the rest are complete, self-contained requests. Specifically, if you
use request, you can use the returned object to send additional information to the
server, for example to PUT a file on the server. Both functions return an instance of
the Cl ientRequest class, defined below.

8.2. Usage	

A simple use to read the contents of a web page looks like this:
 var http = require('@accessors-modules/http-client');
 http.get('http://ptolemy.eecs.berkeley.edu', function(response) {
 console.log('Got response: ' + response.body);
 });

To view all returned parameters from http.get():
 var http = require('@accessors-modules/http-client');
 http.get('http://ptolemy.eecs.berkeley.edu', function(response) {
 console.log('Got response: ' + JSON.stringify(response));
 });

POST and PUT requests typically specify a body, using options.body. (This URL will
give an error since it doesn't allow posting).

 var http = require('@accessors-modules/http-client');
 var options = {
 body : {test : 'this is a test'},
 url : 'http://ptolemy.eecs.berkeley.edu'
 };
 http.post(options, function(response) {
 console.log('Got response: ' + JSON.stringify(response));
 });

8.3. Options	

The options argument to the above functions can be a string URL or a JavaScript
object with the following (optional) fields:

§ body: An object containing the request body. Images are supported in
CapeCode only.

§ headers: An object containing request headers. By default, this is an empty
object. Items may have a value that is an array of values, for headers with
more than one value.

§ keepAlive: A boolean that specified whether to keep sockets around in a pool
to be used by other requests in the future. This defaults to false.

	 26	

§ method: A string specifying the HTTP request method. This defaults to 'GET',
but can also be 'PUT', 'POST', 'DELETE', etc.

§ outputCompleteResponseOnly: A boolean specifying if only a complete response
is allowed, or if multi-part responses are acceptable.

§ t imeout: An integer specifying the maximum time to wait for a response, in
milliseconds. Defaults to 5000 ms.

§ url: A string that can be parsed as a URL, or an object containing the
following fields:

§ host: A string giving the domain name or IP address of the server to
issue the request to. This defaults to 'localhost'.

§ path: Request path as a string. This defaults to '/'. This can include a
query string, e.g. '/index.html?page=12', or the query string can be
specified as a separate field (see below). An exception is thrown if the
request path contains illegal characters.

§ protocol: The protocol. This is a string that defaults to 'http'.

§ port: Port of remote server. This defaults to 80.

§ query: A query string to be appended to the path, such as '?page=12'.

8.4. IncomingMessage	

The responseCallback function, if provided, will be passed an instance
of IncomingMessage, which has these fields:

§ statusCode: an integer indicating the status of the response. A description of
HTTP response codes can be found here: http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html. Codes in the 300 range indicate redirects, and codes 400 or above
indicate errors.

§ statusMessage: a string with the status message of the response.

§ body: a string with the body of the response.

8.5. ClientRequest	

The request and get functions both return an instance of ClientRequest, which has the
following functions:

§ end(): Call this to end the request (no more data to send to the server).
The get() function automatically calls this for you, but request() does not.

§ write(data, encoding): Write data (e.g. for a POST request) using the specified
encoding (e.g. 'UTF-8').

§ The ClientRequest class is an event emitter that emits the following events:

§ 'error': If an error occurs. The message is passed as an argument.

	 27	

§ 'response': A response is received from the server. This event is
automatically handled by calling responseCallback, if responseCallback is not
null, but you can also listen for this event.

8.6. Browser	Considerations	

Cross-Origin	Requests	

For security reasons, scripts in a browser are generally prohibited from certain
types of data transfer in cross-origin requests. The same-origin policy states that two
pages have the same origin if the protocol, port (if given), and host are the same
for both pages.

Client-server coordination is required to achieve cross-origin communication. Two
techniques are cross-origin resource sharing (CORS) and JSON with padding (JSONP).

Cross-Origin	Resource	Sharing	(CORS)	

A server may stipulate that cross-origin requests are allowed. This is called cross-
origin resource sharing (CORS).

§ For simple requests, a CORS-aware browser automatically adds an Origin request
header specifying the host. For example:
 Origin: http://www.terraswarm.org

A server sets the response header Access-Control-Allow-Origin to the list of hosts
allowed access, using * for all hosts. For example:

Access-Control-Allow-Origin : *

or
Access-Control-Allow-Origin : http://www.terraswarm.org

The client checks this header. If access is allowed, the content is loaded.

§ For non-simple preflighted requests, the client first sends an HTTP OPTIONS
request with additional information.

JSON	with	padding	(JSONP)	

The JSON with padding technique takes advantage of the fact that <script> tags in
HTML are exempt from cross-origin restrictions. For example, this is allowed:

<script src="http://www.otherdomain.com/thescript.js"> </script>

In a JSONP request, the client specifies some text to pre-pend to a JSON response.
The server replies with the text plus the JSON data enclosed in parenthesis. If the
client defines a function locally and sends the function name as the text, this
function is then executed with the JSON data as an argument.

For example, calling http://ip.jsontest.com/ will return your IP address in JSON form.
Example:

{"ip": "8.8.8.8"}

A client could define a function that displays data:

	 28	

function showIP(data) { alert(data); }

Next, the client asks the server to prepend this function name to the returned JSON
by appending ?callback=[function_name] to the request URL. For example,
calling http://ip.jsontest.com/?callback=showIP will return this response:

showIP({"ip": "8.8.8.8"});

The showIP function then executes with the returned data as an argument.

jQuery's getJSON() function will issue a JSONP request if the URL ends in ?callback?.
For example:

jquery.getJSON(
 "http://jsonplaceholder.typicode.com/posts/1?callback=?",
 function(data) {
 console.log(JSON.stringify(data));

 });

APIs	and	Libraries	

XMLHttpRequest is an API that allows a client to fetch and send data without having
to do a full page refresh. All modern browsers (Chrome, IE7+, Firefox, Safari, and
Opera) include a built-in XMLHttpRequest implementation. XMLHttpRequest
supports:

§ Both asynchronous and synchronous requests

§ Both text and binary data

§ Event listeners

§ Form submission and file upload

Please see Mozilla's XMLHttpRequest for a complete list of methods and browser
support, and Using XMLHttpRequest for examples.

jQuery is a "fast, small, and feature-rich JavaScript library" that is supported by
modern browsers. jQuery defines an easy-to-use API for common HTML
manipulation and data transfer tasks.

jQuery includes an AJAX (Asynchronous Javascript and XML) method that wraps
XMLHttpRequest for issuing requests. There is also a shorthand GET method.

Browserify is a bundling system and set of modules that replicates most node.js APIs
and functionality in a browser. Browserify allows one to use the "requires" syntax in
a browser and creates a bundle of all modules needed for a particular piece of code
by collecting all of the "require" dependencies. For example:

 browserify main.js > bundle.js

will recursively locate all dependencies starting in the main.js file and output
flattened JavaScript to bundle.js. The HTML page then includes this bundle using a
script tag:

<script src="bundle.js"> </script>

Browserify includes both HTTP and HTTPS modules. These modules depend on many
others, so accessors that use browserify would need to either include bundles or

	 29	

have the browserify source code available in the accessor repository or other
location.

There is a browserify version of jQuery, jQuery-browserify. Unfortunately, jQuery-
browserify has no license, so the terms of use are unknown.

	

