a0
) TerraSwarm

Hosts and Modules

Edward A. Lee

Programming the Swarm Workshop

Berkeley, CA
May 27-29, 2015

Sponsored by the TerraSwarm Research Center, one of six centers administered by
(\z the STARnet phase of the Focus Center Research Program (FCRP) a Semiconductor

Research Corporation program sponsored by MARCO and DARPA.

29 We are Here

" https://www.terraswarm.org/accessors/wiki/Main/
" ProgrammingTheSwarmWorkshopAgenda

View | Edit | | History | | Attach | @ Print

Programming The Swarm Workshop Agenda

@ ;.
&Y TerraSwarm May 27-29, 2015, Berkeley.
Tentative Agenda. We expect the agenda to be very fluid, so this is just a guideline.

Important: Do the homework. In particular, install Ptolemy |l &. If you fail to do this, we will try to h

Navigation
m TerraSwarm Home &
» Accessors Home WedneSday May 27:
= Accessors Wiki N— * For those who ¢ o the homework: Software installation workshop (Christopher)
= Editing Instructions ¢/ ' * For those who ¢ homework: Breakfast.
edit SideBar
9:00am |Introduction and zation (15 minutes)
Search
9:15am |Accessor Design ird Lee, 30 minutes)
Go 9:45am |(Common Exeg\'m d7n Audio Accessor, parts 1 and 2 (45 minutes)

10:30am |Break (15 minutés\/

10:45am |Nashorn/Ptolemy Il host (Edward Lee, 15 minutes)

11:00am |JavaScript Functions and Modules (Edward Lee, 30 minutes)

11:30am |Common Exercise: Build an Audio Accessor, parts 3 and 4 (45 minutes)

o

Accessor Architecture

Version 0.1a

Accessor Interface Accessor Interface
XML or JavaScript XML or ngaScript
impIementsT
Accessor requires
Interface + JavaScript o Module API Definition | implements
CommonlS + Text
runs | Accessor Host
in Nashorn + Ptolemy |l runs
in
, Accessor Host Module Implementation
- Nashorn +Java JavaScript + Java (Nashorn)
_ | Accessor !—Iost Module Irr.lplementa.tion
Node.js JavaScript (Node.js)
| Accessor Host Module Implementaﬁon
Browser JavaScript

_ (@)
@ JavaScript Ecosystem

e JSON (JavaScript Object Notation):
— Textual notation for arrays and key-value pairs.
* JavaScript engines:
— Browsers
— Node.js (Google’s V8 / Chrome JavaScript in C++)
— Nashorn (Java implementation of JavaScript)
* JavaScript APIs

— Vert.x (Eclipse foundation application platform)
— Avatar (Oracle’s Node.js on Nashorn)

_ (@)
@ JavaScript Ecosystem

* Browsers
— Extensive support for manipulating documents

— Limited support for network access (e.g., AJAX and
XMLHttpRequest object)

* Node.js
— Intended for “server side” (not in a browser)

— Rich, general-purpose application platform
— C++ on x86, ARM, MIPS, w/ OSX, Windows, Linux
* Nashorn
— Java 8’s JavaScript engine
— With Vert.x, a rich, general-purpose application platform
— Runs on the JVM with full access to Java.

/ A Swarmlet Host

* Can instantiate and execute accessors

* Provides a JavaScript engine

* Implements required top-level functions
* Provides required modules

* Provides zero or more optional modules

* Provides composition of accessors

o

Ptolemy Il Swarmlet Host

Can instantiate accessors

® O 6 Unnamed i
View Edit Graph Debug Help
openFile %0 |IX]| @ | A |EJ|D> 11| @ = |pm iu|c)> 5|00 | &
Open URL . : : ‘ ‘ ‘ ‘ ‘ ‘ ‘
New >
Save 8BS free | StockTick]
Save As | — . ‘
Import » Import Accessor [Pl |
Export > Import FMU as a Ptolemy Actor
Print 8P Import FMU as a Java FMU (experimental) \
Close FW Import FMU as a Ptolemy Actor for QSS integration
) Import FSMActor using synthesis f

Recent Files b Import Design Pattern
Exit $Q Import Library

. I I

e O 06 Import Accessor
location: http://www.terraswarm.org/accessors | Browse

accessor: | Accelerometer.xml
v Accelerometer.xml
AudioPlayer.js

4»

Browser.xml

GeographicLocationByIP.xml

KeyValueStore.xml

Hue.xml F
uen

SensorTag.xml

P
Q/ A Swarmlet Host

Can instantiate and execute accessors

Provides a JavaScript engine

Provides

Provides

mplements required

top-level functions

In Ptolemy

|, this is Nashorn, with

full access to Java and Vert.x.
Security? Needs to be sandboxed...

Provides composition of accessors

/ A Swarmlet Host

* Can instantiate and execute accessors

* Provides a JavaScript engine

* Implements required top-level functions
* Provides required modules

* Provides zero or more optional modules

* Provides composition of accessors

Top-Level Java Script Functions

This page describes the top-level JavaScript functions required to be provided by an accessor host in the version 0.1a (Berkeley) of
the accessor specification. See Top-Level JavaScript Functions B for the Michigan version.

The following functions, listed alphabetically, enable the script to get inputs and produce outputs, and also provide a small set of utility
functions.

= addinputHandler(function, inpuf): Specify a function to invoke when the input with name input (a string) receives a new input
value. Note that after that function is invoked, the accessor's fire() function will also be invoked, if it is defined. If the specified
function is null, then only the fire() function will be invoked. If the input argument is null or omitted, then the specified function will
be invoked when any new input arrives to the accessor. This function returns a handle that can be used to call
removelnputHandler(). Important: If you add an input handler during execution of the swarmlet, e.g. in initialize(), then you must
call removelnputHandler(), or your input handler will persist across executions of the swarmlet. Do this in wrapup().

= alert(message): Pop up a dialog with the specified message.

= clearInterval(handle): Clear a timer interval action with the specified handle (see setinterval()).

= clearTimeout(handle): Clear a timeout with the specified handle (see setTimeout()).

= get(inpuf): Get the value of an input with name input (a string). See Input.

= print(message): Print the specified message to the console (standard out).

= removelnputHandler(handle, input): Remove the callback function with the specified handle (returned by addinputHandler()) for
the specified input (a string).

= require(moduleName): Load the specified module by name (a string) and return a reference to the module. The reference can be
used to invoke any functions, constructors, or variables exported by the module (see Module Specification).

» send(value, name): Send a value to an input or output with the specified name (a string). See Input and Output.

= setinterval(function, milliseconds): Set the specified function to execute after specified time in milliseconds and again at multiples
of that time, and return a handle. The specified function may send data to outputs or inputs and may get data from inputs. If
additional arguments are provided beyond the first two, then those arguments are passed to the function when it is called.

= setTimeout(function, milliseconds): Set the specified function to execute after specified time in milliseconds and return a handle.
The specified function may send data to outputs or inputs. If additional arguments are provided beyond the first two, then those
arguments are passed to the function when it is called.

/ A Swarmlet Host

* Can instantiate and execute accessors
* Provides a JavaScript engine
* Implements required top-level functions

* Provides required modules
Built-In Java Script Modules

The following objects provide bundles of functions and should be built in to any accessor host.

= console: Provides various utilities for formatting and displaying data.
= events: Provides an event emitter design pattern (requires util).
= util: Provides various utility functions.

Sl Optional Java Script Modules
' The following objects provide bundles of functions. An accessor that uses one or more of these

modules must declare that requirement using the require tag or JavaScript function.

Reasonably Well-Developed Modules

o Ca = eventbus: Provide publish and subscribe on a local network through a Vert.x event bus.
= httpClient: Provide support for HTTP clients.

g = webSocket: Provide full-duplex wg' ===« intasionascmd finsalioms fow ol moslnlannass,
Pr Audio
° m Unfinished Modules This package provides access to the host's audio
hardware.
= audio: Provide access to the host]
* Prd . browser: Provide display in the ad_FuUNctions
= discovery: Provide device discove = Player(options): Constructor for an audio player.
e P F¢ = localStorage: Provide persistent k This acquires access to the audio hardware.
= maqtt: Provide support for MQTT p FIXME: Currently, no options are supported. The
= obd returned object provides the following functions:
= serial = play(data): Play back the specified array of
Y P r(= coap numbers, which give audio samples.
= rabbitmq = stop(): Stop audio playback. After calling this,
= ble you will need a new instance of Player to
resume playback.

To implement a module, see the Module Specification.
TerraSwarm Research Center 12

P
&/ Solution to Step 2

Step 2 Solution

ChECkEd In to At the right is an instance of the AudioPlayer accessor.
In its original (incomplete) form for this exercise, it has no
SPT' |/ input port. It just plays a fixed sinusoidal sound when it is
initialized. You should augment the accessor definition to
Or‘g/ endow it with an input, and then plug in in place of the The accessor below
Plotter below to generate a chirp signal. is @ modification
terraswarm/ . of the original to
_ DiscreteClock Reran have an input and
accessor/ mg?er [Expression collect samples.
d / . ’ ‘ | | SIn(2=F6/B000) AudioPlayer_Step?2
emo _ -
input

Audio/ |
DiscreteClock2
- trigger Ramp2
solutions/
models/

AUd'O_Stepzxml DE Director

Jodp

uels
dois

The composition semantics in this model is DE (discrete events),
where components send each other time-stamped events.

The parameters of the Clock and Ramp actors control the frequency
of the sinusoidal signal that is generated.

Extra credit: Replace the lower Ramp with some other accessor, such

as StockTick, to control the frequency of the signal based on stock prices.
Alternatively, use accessors to create a web socket connection to another
machine to control the frequency from another machine.

¥ Step 2
\ ep

Solution

This accessor is designed
to run on any host that
implements the “audio”
module.

In principle, all the hosts
should be able to do this,
though we’ve only
implemented it on
Ptolemy II/Nashorn.
Project idea?

TerraSwarm Research Center

exports.setup = function() {
accessor.author('Edward A. Lee');
accessor.version('0.1 $Date:$');
accessor.input('input');

X

var audio = require("audio");

// State variables for this accessor:
var buffer = [];

var sampleCount = 0;

var handle null;

var player = null;

exports.initialize = function() {
sampleCount = 0;
player = new audio.Player();
handle = addInputHandler(handleInput,

}

function handleInput() {
var sample = get('input');
buffer[sampleCount++] = sample;
if (sampleCount == 128) {
player.play(buffer);
sampleCount = 0;

}

exports.wrapup = function() {

if (player '= null) {
player.stop();
player = null;

}

if (handle == null) {
removeInputHandler(handle,

}

‘input');

"input');

audio module,

Ptolemy II/Nashorn implementation

SPTII/
ptolemy/

actor/
lib/

jis/
modules/

audio/
audio.js

o~NOULLSESE WN PR

| ™

// CommonJS module to access audio hardware on the host.
// Reference to the Java class documented at:

// http://terra.eecs.berkeley.edu:8080/job/ptIl/

// javadoc/ptolemy/media/javasound/LiveSound.html

var LiveSound = Java.type('ptolemy.media.javasound.LiveSound');

exports.Player = function(options) {
LiveSound.setSampleRate(8000);
LiveSound.startPlayback(this);

}

exports.Player.prototype.play = function(data) {
// NOTE: Convert array into 2-D array required by LiveSound.
LiveSound.putSamples(this, [datal);
}

exports.Player.prototype.stop = function() {
LiveSound.stopPlayback(this);
}

Any CommonlJS module found in this modules directory
is supported by the Ptolemy Il host.

- 0
y/ Defining a CommonJS Module

SPTII/
ptolemy/

Yl {
2 "name": "audio",
aCtor/ 3 “version“: "“0.1.0%;
Ib 4 "main": "audio.js",
| / 5 "license" : "BSD-3-Clause",
.. 6|V "contributors": [
JJS/ 7V {"name" : "Edward A. Lee"
8| = , "email" : "eal@eecs.berkeley.edu"}
9| = 15
mOdU|e5/ 10 "description": "A module for accessing audio hardware on the host."
. 11| = }
audio/
package.json

package.json file makes this a CommonlJS module.

o

audio module,

Ptolemy II/Nashorn implementation

SPTII/
ptolemy/

actor/
lib/

jis/
modules/

audio/
audio.js

o~NOULLSESE WN PR

v

| ™

// CommonJS module to access audio hardware on the host.
// Reference to the Java class documented at:

// http://terra.eecs.berkeley.edu:8080/job/ptII/

// javadoc/ptolemy/media/javasound/LiveSound.html

var LiveSound = Java.type('ptolemy.media.javasound.LiveSound');

exports.Player = function(options) {
LiveSound.setSampleRate(8000);
LiveSound.startPlayback(this);
}

exports.Player.prototype.play = function(data)
// NOTE: Convert array into 2-D array requi oy LiveSound.
LiveSound.putSamples(this, [datal);
}

exports.Player.prototype.stop = function() {
LiveSound.stopPlayback(this);
}

This implementation uses a utility class in Ptolemy lI,
implemented in Java, leveraging Nashorn’s Java interface.

Optional Java Script Modules

The following objects provide bundles of functions. An accessor that uses one or more of these
modules must declare that requirement using the require tag or JavaScript function.

More :
modules | *

Reasonably Well-Developed Modules

eventbus: Provide publish and subscribe on a local network through a Vert.x event bus.
httpClient: Provide support for HTTP clients.
webSocket: Provide full-duplex web socket interfaces and functions for web socket servers.

Unfinished Modules

audio: Provide access to the host audio hardware.

browser: Provide display in the default browser.

discovery: Provide device discovery for devices on the local area network.
localStorage: Provide persistent key-value storage based on local files.
maqtt: Provide support for MQTT protocol clients.

obd

serial

coap

rabbitmq

ble

See: https://chess.eecs.berkeley.edu/ptexternal/src/ptll/doc/codeDoc/js/index.html

TerraSwarm Research Center

18

P
Q/ A Swarmlet Host

Can instantiate and execute accessors

Provides a JavaScript engine

Provides

Provides

mplements required

top-level functions

In Ptolemy

|, this is governed by a

director. The DE Director seems to
work rather nicely with accessors.

Provides composition of accessors

P
&0/ Solution to Step 2 — Extra Credit

Checked in to

SPTII/

org/
terraswarm/

accessor/
demo/

Audio/
solutions/
models/

Audio Step2
ExtraCredit.xml

Step 2 Extra Credit Solution

At the right is an instance of the AudioPlayer accessor.

In its original (incomplete) form for this exercise, it has no
input port. It just plays a fixed sinusoidal sound when it is
initialized. You should augment the accessor definition to

endow it with an input, and then plug in in place of the The accessor below
Plotter below to generate a chirp signal. is @ modification
of the original to
DiscreteClock e have an input and

- Expression collect samples.
N _ sin(2*PI*n/8000) ,
| AudioPlayer_Step2

input

Expression2
= 440 + (p - 130) * 100

JoL

DE Director

The composition semantics in this model is DE (discrete events),
where components send each other time-stamped events.

The parameters of the Clock and Ramp actors control the frequency
of the sinusoidal signal that is generated.

Extra credit: Here, the stock price of Apple is retrieved and compared against
a nominal price of 130. If it is trading at the nominal price, the output will be
a sinsoid with frequency 440 Hz (middle A on the piano). Above that price
yields a higher pitch, and below that price yields a lower pitch.

s O

Common Exercise — Part 3

3. Modify the CommondJS audio module.

An accessor is designed to be executable by any accessor host, not just Ptolemy |I/Nashorn.
Many accessors, including AudioPlayer, require that the host provide some capability. For
AudioPlayer, the host needs to provide access to the audio hardware of machine. This
requirement is expressed in the accessor by the line

var audio = require("audio");

This line refers to a module called "audio”. Every accessor host that is capable of hosting
AudioPlayer must provide an implementation of that module.

Your task now is to augment the module by adding one more object type, Capture, with two
functions, get and stop that retrieve an array of audio samples and stop the capture, respectively.

We suggest you make these modifications directly in the audio.js file using an editor of your
choice.

s O

Common Exercise — Part 3

You can experiment with your module by instantiating an actor called JavaScript in a new Ptolemy
I model. We suggest placing a DE Director in the model, and then double clicking on the
JavaScript actor and writing your test code as in the following example:

var audio = require("audio");

exports.initialize = function() {
var capture = new audio.Capture();
var data = capture.get();

for each (sample in data) {
print (sample);
}

capture.stop();

}

Now, each time you run the model, the body of code in your initialize function will execute.

s O

Common Exercise — Part 4

4. Create an AudioCapture accessor.

Your final task is to create an AudioCapture accessor. In the same directory where you
downloaded and modified AudioPlayer, create a new file AudioCapture.js that defines this
accessor. To import this accessor to Ptolemy I, you will need to create a third file called
index.json that contains an array of accessor definition files provided in this directory, like this:

['AudioPlayer.js', 'AudioCapture.ijs']

The index.json file defines an accessor library. Once you have created this file, in vergil, you can
invoke File->Import->Import Accessor to instantiate accessors from your new accessor library.

P
&/ Horizontal Contracts

An AudioCapture
accessor is a
spontaneous
source,
producing data
when it is
available. How to
control and time
its execution?

swarmlet

swarm service

- -
—
S o — -

@

Blocking? Threading? Timing?

OVERVIEW PACKAGE | @&f::isi TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ptolemy.media.javasound

Class LiveSound LiveSound.getSamples() blocks
java.lang.Object until enough samples are
ptolemy.media.javasound.LiveSound ready. What are the
consequences on a swarmlet?
zzkt’iizsc;:j:’l‘:::sg:‘:ct How should you handle this?

This class supports live capture and playback of audio samples. For audio capture, audio samples are
captured from the audio input port of the computer. The audio input port is typically associated with the
line-in port, microphone-in port, or cdrom audio-in port. For audio playback, audio samples are written to
the audio output port. The audio output port is typically associated with the headphones jack or the internal
speaker of the computer.

TerraSwarm Research Center 25

