
Introduction to ROS and
the Scarab Robots

Amanda Prorok
University of Pennsylvania, GRASP Lab.

TerraSwarm - Programming the Swarm Workshop
UC Berkeley, May 28, 2015

Overview

1. ROS: concepts
• computation graph
• topic negotiation
• network configuration
• publisher / subscriber example

2. Using ROS with the Scarab robot
• setup
• publisher / subscriber example
• using roslaunch

3. Application:
• sending waypoints to the Scarab (movies)
• simulator (demo)

4. Interfacing ROS with Swarmlets
• 2 suggestions

What is ROS?
ROS is an open-source, meta-operating system, see www.ros.org:

“The Robot Operating System (ROS) is a set of software libraries and
tools that help you build robot applications. From drivers to state-of-
the-art algorithms, and with powerful developer tools, ROS has what
you need for your next robotics project. ”

ROS provides:
• a collection of package management and software building tools
• implementation of commonly-used functionality
• architecture for distributed inter-process and inter-machine

communication and configuration
• hardware abstraction & low-level device control

http://www.ros.org

ROS Filesystem
ROS resources that you encounter on disk:

packages:
Packages are the main unit for organizing software in ROS. A
package may contain ROS runtime processes (nodes), a ROS-
dependent library, datasets, configuration files.

repositories: A collection of packages which share a common version
control system.

package manifests: Manifests (package.xml) provide metadata about a package

message types:
Message descriptions, stored in my_package/msg/
MyMessageType.msg, define the data structures for messages
sent in ROS

service types:
Service descriptions, stored in my_package/srv/
MyServiceType.srv, define the request and response data
structures for services in ROS

Navigating the filesystem:
roscd, rospack, rosls

ROS Graph Concepts
ROS runtime graph is a peer-to-peer network of processes that are
loosely coupled via the ROS communication infrastructure

nodes: A node is an executable that uses ROS to
communicate with other nodes.

messages: ROS data type used when subscribing or publishing
to a topic.

topics: Nodes can publish messages to a topic as well as
subscribe to a topic to receive messages.

master: Name service for ROS: name registration and
lookup; negotiates connections

rosout: ROS equivalent of stdout/stderr

parameter server: Stores persistent configuration parameters

roscore: 3 programs: master + rosout + parameter server

ROS: Nodes and Topics

topic

nodenode

publishers

node node

subscribers

… …

Nodes:
• Nodes are processes that perform computation.
• A ROS node is written with the use of a ROS client library: roscpp or rospy  

Topics:
• Messages are routed via a transport system with publish / subscribe semantics
• A node sends out a message by publishing it to a given topic
• The topic is a name that is used to identify the content of the message
• Analogy: topic as a strongly typed message bus (according to .msg spec)
• Asynchronous ‘stream-like’ communication
• TCP/IP or UDP transport

Message Types
ROS uses a simplified Message description language for describing
the data values (Messages) that ROS nodes publish. Message
descriptions are stored in .msg files in the msg/ subdirectory of a
ROS package.

The format of a Message description is a list of data field descriptions
and constant definitions on separate lines:
int32 x
int32 y  

Field types can be:
1. a built-in type
2. names of custom or built-in Message descriptions
3. fixed- or variable-length arrays (lists) of the above
4. the special Header type, which maps to std_msgs/Header

Topic Negotiation

roscore ROS master:
topics / services registration

publisher subscriber

1 23

4

5

1. I am publishing on /topic,
reach me at HOSTNAME

2. I am subscribing to /topic
3. Contact “publisher” at

HOSTNAME
4. I am subscribing to /topic
5. Data on /topic

ROS TCP Topics

master

laser visualizer

advertise(“scan”)

ROS TCP Topics

master

laser visualizer

topic: scan

ROS TCP Topics

master

laser visualizer

topic: scan
subscribe(“scan”)

ROS TCP Topics

master

laser visualizer

topic: scan
subscribe(“scan”)

ROS TCP Topics

master

laser visualizer

topic: scan

scan(TCP)

ROS TCP Topics

master

laser visualizer

topic: scan

publish(scans)

…………………………..

Network Configuration

Multiple machines configuration:
$ export ROS_HOSTNAME=scarab42.wifi
$ export ROS_MASTER_URI=http://scarab44.wifi:11311

Single machine configuration:
$ export ROS_HOSTNAME=localhost
$ export ROS_MASTER_URI=http://localhost:11311

ROS_MASTER_URI is a required setting that tells nodes where they can
locate the master. It should be set to the XML-RPC URI of the master.

When a ROS node advertises a topic, it provides a hostname:port
combination (a URI) that other nodes will contact when they want to
subscribe to that topic. It is important that the hostname that a node
provides can be used by all other nodes to contact it.

Publisher/Subscriber: Example

Useful Commands

$ rosnode list
$ rosnode info [node_name]
$ rosrun [package_name] [node_name]
$ rostopic echo [topic_name]
$ rostopic type [topic]
$ rostopic pub [topic] [msg_type] [args]
$ rospack find [package_name]

Useful links:
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/NetworkSetup

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/NetworkSetup

Using ROS with Scarabs

Setup
1. Install Ubuntu 14.04 (on binary compatible machine)
2. Install the full desktop version of ROS Indigo
3. Configure ROS environment, see instructions:
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

4. Install dependencies (see Appendix)
5. Download (and compile) Ben Charrow’s scarab repository

https://github.com/bcharrow/scarab/tree/bcharrow-devel  

6. Configure your .bashrc file on all machines (including robots):
$ export ROS_HOSTNAME=myhostname
$ export ROS_MASTER_URI=http://masterhostname:11311

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
https://github.com/bcharrow/scarab/tree/bcharrow-devel

Scarab Packages

Main packages:
• roboclaw: motor driver
• laser_odom: odometry estimate
• scarab: launch files
• scarab_twist: keyboard driving
• hfn: human friendly navigation

Also used from ROS repository (included in Indigo installation):
• gmapping: occupancy grid mapping

Repository:
https://github.com/bcharrow/scarab/tree/bcharrow-devel

https://github.com/bcharrow/scarab/tree/bcharrow-devel

Publisher / Subscriber: Example

On robotOn computer

Launching Multiple Nodes
ROS provides a way to configure and launch a collection of ROS nodes.
Use the roslaunch program with a .launch XML file that configures
system:
roslaunch [packagename] [file.launch]

Allows us to:
• easily run multiple ROS nodes locally and remotely via SSH
• set parameters on the parameter server
• automatically re-spawn nodes if they die
• change node names, namespaces, topic names without recompiling

$ roslaunch scarab scarab.launch
$ roslaunch scarab gmapping.launch
$ roslaunch scarab hfn.launch

Examples:

Example: Create Map

Example: Navigate to Goal

Actions

The actionlib package provides tools to create servers that execute long-
running goals that can be preempted. It also provides a client interface in
order to send requests to the server.

Action specification:
1. Goal: sent to an ActionServer by an ActionClient.
2. Feedback: provides server implementers a way to tell an ActionClient about

the incremental progress of a goal
3. Result: sent from the ActionServer to the ActionClient upon completion of

the goal (sent just once).

The action specification is defined using a .action file
 
Useful link:
http://wiki.ros.org/actionlib

http://wiki.ros.org/actionlib

Goal to Action
1. Create a node that publishes messages to goal topic.
2. Create a node that subscribes to goal topic:
…/scarab/hfn/scripts/goal_to_action.py

This python program receives goal points from publisher node, and calls a
callback function to transform it to an action:

rospy.Subscriber("goal", PoseStamped, callback)

The goal is processed in callback function, and sent to a MoveAction client:

create client in main
client = actionlib.SimpleActionClient('move', MoveAction)
 

send goal to action server
client.send_goal(goal)

...

Using an Existing Map

We can create a map once and use it subsequently when operating
in that environment (for localization navigation purposes, etc).
Use map_server package to save and load maps.

rosrun map_server map_saver -f mymapfilename map:=mymaptopic

Remap the topic name to match the topic name used by your
subscriber.

Useful links:
http://wiki.ros.org/map_server#map_saver
http://wiki.ros.org/Remapping%20Arguments

http://wiki.ros.org/map_server#map_saver
http://wiki.ros.org/Remapping%20Arguments

Simulation

For testing purposes, we can run code for the Scarab robot in a
kinematic simulator. The code is identical to the one we would run on
the actual hardware.

Steps:
1. run ROS with a local master URI
2. roslaunch scarab simulation.launch
3. rosrun rviz rviz
4. choose the appropriate displays to view (i.e., robot frame, map,

laser)
5. roslaunch scarab hfn.launch
6. send waypoints to /goal topic

DEMO

ROS-Swarmlet Interface V1
Idea:
Send a waypoint (or vector of waypoints) to the robot using the hfn
package.

Suggestion 1:
Adapt the script …/scarab/hfn/scripts/goal_to_action.py
so that goal points are received from a swarmlet (via accessors).

Instead of using a ROS publisher of /goal topic, grab the goal data from
an accessor (from within this Python script).  
Replace lines
rospy.Subscriber("goal", PoseStamped, callback)
rospy.spin()

with something like the following:
while AccessorDataAvailable():
 data = GetAccessorData()
 callback(data)

ROS-Swarmlet Interface V2
Idea:
Send a waypoint (or vector of waypoints) to the robot using the hfn
package.

Suggestion 2:
Use the script …/scarab/hfn/scripts/goal_to_action.py
as it is.

Create your own ROS publisher node that sends messages to /goal
topic using client libraries (c++ or python). This node represents the
accessor-to-ROS interface.

Appendix

Dependencies

accache
openssl-server
ttf-dejavu
libncurses-dev
libnl-dev
libarmadillo-dev
libncurses5-dev
libcgal-dev
ros-indigo-desktop-full
ros-indigo-openni2-launch
ros-indigo-hokuyo-node
ros-indigo-joystick-drivers
ros-indigo-navigation
ros-indigo-octomap-mapping
ros-indigo-gmapping
ros-indigo-octomap-rviz-plugins
python-rosinstall
python-rosdep
iperf
python-pip
libgsl0-dev
libgsl0-dbg
libgsl0ldbl

strace
ipython
python-serial
git-core
build-essential
python-yaml
cmake
minicom
iputils-arping
iputils-tracepath
iputils-clockdiff
cfengine2
console-common
acpid
ifplugd
batctl
batctl-dbg
traceroute
olsrd
olsrd-plugins
nfs-common
rsync
subversion

Topics vs Services vs Actions
Topics should be used for continuous data streams (sensor data, robot state, ...).

Services should be used for remote procedure calls that terminate quickly, e.g.
for querying the state of a node or doing a quick calculation. They should never
be used for longer running processes, in particular processes that might be
required to be preempted if exceptional situations occur. These processes
should never change or depend on state to avoid unwanted side effects for other
nodes.

Actions should be used for everything that moves the robot or that runs for a
longer time such as perception routines that are triggered by some node and
need a couple of seconds to terminate. The most important property of actions is
that they can be preempted, and preemption should always be implemented
cleanly by action servers. Another nice property of actions is that they can keep
state for the lifetime of a goal, i.e. if executing two action goals in parallel on the
same server, for each client a separate state instance can be kept since the goal
is uniquely identified by its ID.

Topics vs Services vs Actions

Topics: Continuous data flow. Data might be published and subscribed at any
time independent of any senders/receivers. Many to many connection. Callbacks
receive data once it is available. The publisher decides when data is sent.

Service/Actionlib: On-demand connection for one specific task. Service calls/
Actionlib tasks are processed when the client decides to request so. Tasks take
time to complete.

Service/Actionlib are thus very similar and can actually be used interchangeably
in their functionality. However, they serve different purposes:

Service: Simple blocking call. Mostly used for comparably fast tasks as
requesting specific data. Semantically for processing requests.

Actionlib: More complex non-blocking background processing. Used for longer
tasks like execution of robot actions. Semantically for real-world actions.

