SLATE: A Combined Architecture for
LDPC and Turbo Decoding

Stevo Bailey, Ben Keller, and Paul Rigge
University of California, Berkeley
{stevo, bkeller, rigge } @eecs.berkeley.edu

Abstract—LDPC and turbo codes are channel codes com-
monly used for wireless communication. Decoding algorithms
are computationally demanding, and so efficient implementations
are often inflexible, targeting only the codes specified by a
given standard. When support for multiple standards is needed,
multiple decoders are generally used. We study the algorithms for
decoding each standard and find that some functional units can
be shared between both types of decoders. This work presents
a design for a combined architecture decoder that supports the
codes defined in the 802.11ac and LTE standards. We present
some preliminary performance results and show that the majority
of the area is consumed by LDPC-specific components. We
conclude that this combined architecture allows a turbo decoder
to be added to an LDPC decoder with little overhead.

I. INTRODUCTION

High performance channel codes are essential for achieving
efficient, reliable communication. However, these codes, such
as LDPC or turbo codes, have computationally demanding
decoding algorithms. Implementations of these decoders are
often special-purpose hardware targeting the specific codes
designated by a standard, especially as mobile standards con-
tinue to demand increased throughput and power efficiency.
However, sharing flexible computation resources can reduce
cost and provide more space for other inflexible resources, such
as batteries in mobile applications. Flexible computation units
are especially useful for supporting different standards and
providing a path for supporting future standards with existing
hardware.

In this report, we present SLATE (SLATE is an LDPC
And Turbo Engine), a hardware design that implements both
the 802.11n and LTE Advanced standards. Presently, such
systems generally have separate hardware for decoding the
LDPC codes of 802.11 and the turbo codes of LTE. As both
decoders are relatively large and perform similar functions, it
is desirable to combine them into a flexible decoder. However,
the computational demands and high throughput requirements
make a truly general purpose decoder impractical. This paper
describes how to integrate an LDPC decoder with a turbo
decoder in an efficient architecture.

The remainder of the report is structured as follows.
Section |lI] provides background on the algorithms and com-
putational requirements for the decoders. Section [lII| presents
the chosen decoder architectures and their designs. Section [[V]
discusses the components that can be shared in a combined
LDPC/Turbo architecture. Section [V] presents a discussion
about the performance of our design. Section [V]] gives some
ideas for improving this design, and Section concludes.

II. BACKGROUND

Channel coding attempts to protect data from corruption by
a noisy channel. An encoder E maps data from an alphabet A
to a subset of the channel alphabet X called C. Each element
of the codebook C is called a codeword. For a codeword
¢ = E(x), where ¢ € C and z € A, a decoder receives a
signal y that has been corrupted by the channel. The goal of a
(possibly randomized) decoder D is to produce an output that
maximizes Pr[D(y) = x]. For many codes, optimal decoders
have impractically high computational complexity; however,
LDPC and turbo codes have iterative approximate algorithms
that produce good results at acceptable computational cost.

A decoder receives soft information from a channel demod-
ulator and produces soft (or hard) estimates of the received bits.
For numerical reasons, these soft bits are often represented as
log-likelihood ratios, defined here as

Priu=

l(u) =log Prfu =1

A. LDPC Decoding

A low-density parity-check (LDPC) code is a linear block
code defined by its parity check matrix H, where a parity check
matrix has the property that for every codeword ¢, He” = 0.
LDPC codes are so named because H is sparse, a property
which allows for an efficient decoder implementation. H can
also be represented graphically as a factor graph, as shown in
Figure|l] A bit ¢ from the channel is represented by a variable
node VN(¢) and each parity check j is represented by a check
node CN(j). An edge between variable node ¢ and check node
J exists if H;; = 1.

CN1 CN2 CN3 CN4

V2(/ \?ZV

VN1 VN2 VN3 VN4 VN5 VN6

Fig. 1: Factor graph representation of a simple linear block
code, with circles representing variable nodes and squares
representing check nodes. (Image credit: Matt Weiner)

o - - - o0 0 - - 0o - - 0 1 0 - - - - = - - - - -
22 0 - - 17 - 0o 0 12 -
6 - 0 - 10 - - - 28 - 0 - - - 0 0 - - - - - - - -
2 - - 0 20 - - - 25 0 - - - - - 00 - - - - - - -
23 - - - 3 - - - 0 - 9 11 - - - - 0 0 - - - - - =
24 - 23 1 17 - 3 - 10
25 - - - 8 - - - 7 18 - - 0 - - - - - o 0 - -
13 24 - - 0 - 8 6 - - - = = = = = - - 0o 0 -
7 20 = le 22 10 = = 23
11 - - - 19 - - - 13 - 3 17
25 - 8 - 23 18 - 14 9

3 - - - 16 - - 2 25 5 - - 1 - - - - = - - - - = 0
Fig. 2: One parity check matrix for 802.11ac code. The block
length is 648 bits, rate is 1/2, and subblock size is 27 bits. A

non-blank entry represents a cyclically shifted identity matrix.

The 802.11n standard [1]] uses specially structured LDPC
codes said to be quasi-cyclic. An example of such a structured
LDPC code is show in Figure [2| Note that each non-blank
entry is a cyclically shifted identity matrix, so a hardware
implementation can use efficient shifters to simplify routing.

The offset min-sum algorithm is a popular variant of the
message passing algorithm for decoding LDPC codes. It is
called message passing because computations are performed
locally at check and variable nodes and sent as messages to
other check and variable nodes to act as input for the next
iteration of messages. Connections between the variable and
check nodes are determined by the parity check matrix H. The
check node computation is performed as

v,)=]
EN(I\{j}

sgn (V2C(j,4))

V2C(, 7)) — B, o)

max < min
eN(G)\{i}

where N (i) is the neighborhood of i defined as all the
nodes to which node i is connected, and [is the offset. The
variable node computation is

V2Ci)= Y

J'eN(@\{s}

C2V (', 1) + U(u;)

where [(u;) is the ¢th LLR from the channel. Messages are
passed back and forth until some stopping condition is met:
either a valid codeword is found or the decoder reaches some
maximum number of iterations.

B. Turbo Decoding

The turbo coding scheme in LTE is a parallel concatenated
convolution code [2]]. The encoder is shown in Figure
uncoded bits are fed into the three-state encoder, producing
a systematic output X, an output Y; that has been encoded
with an 8-state convolutional code, and an output Y5 that has
been encoded with the same 8-state convolution code with the
order scrambled by an interleaving defined by the standard.
Accordingly, all LTE turbo codes are rate 1/3. The length of
these outputs (i.e., the block size of the code) varies from 40
to 6144 bits.

An efficient decoder for turbo codes is shown in Figure]
A soft-input soft-output (SISO) unit implementing the BCJR
algorithm produces bit estimates that are interleaved and
used as inputs by the other SISO unit [3[]. The a posteriori

3

Y

a
-

Binary data

QPP
Interleaver

3

)43

N
o>
Y

VanY Va
e Y
A\

Va nY Va

J
D¢

Fig. 3: Encoder for LTE turbo code [3].

w(X))
V4(X;
AX) A'é* weper | a0 Y
R(Zy) SISO T
R(Z,) processor
R(Z'
2.
R(Z',)
Va(X')

“Lower”

SISO

processor

Fig. 4: Turbo decoder with SISO units. X; and X are the sys-
tematic bits in deinterleaved and interleaved order, respectively.
Z1 and Zs are the encoded bits, and their primed counterparts
are in interleaved order. Each SISO block is considered one
half-iteration of the decoding algorithm.

probability computed by the SISO unit is given for a state s
in the trellis at time % as

A(tg)= ﬁé (ak—1(Sk—1 + V& (Sk—1,5K) + Br(sk))
- g;%é (ok—1(Sk—1 + Y (Sk—1,5k) + Br(sk))

where «y, is the forward state metric, S is the backward state
metric, and v are the branch transition probabilities. The «
and (3 terms are readily computed by

ag(sy)= rﬁj}f (ag—1(8K-1))

Br(sk)= Igfv)f (Brs1(sx+1))

where max* approximates an exponential sum:
m?—xx(a, b) = max(a7 b) + IOg(l + e—|a—b\)

The branch metrics encode the probability of moving from
state s;_71 to state sp given the observed channel output.
Accordingly, each series of «y and 5 can be calculated by
performing forward and reverse trellis traversals respectively.

III. DECODER ARCHITECTURES

Various architectures exist for both LDPC and turbo de-
coders. Decoders can vary in the amount of parallelism, the
decoder schedule, and interface with other blocks. In this
section we briefly describe our design decisions.

\\‘ / a

window ——2 / \ B
R\ ™. dummy

% X B

time

Fig. 5: This figure shows the schedule our design follows
for turbo decoding. Dummy betas must be computed from
the following window before betas can be computed. Betas
are computed and stored in a scratch memory before alphas
are computed. As alphas are computed, betas are read out in
reverse order and the a posterior LLR is computed.

A. LDPC Decoder

For simplicity, the LDPC decoder contains a single variable
node group and a single check node group, so that only one
subblock is decoded at a time. All memory and marginalization
is done within the variable nodes; the check nodes just compute
the minima. C2V marginalization is handled by passing a V2C
address with the minima, which is then compared inside the
variable node [4]. V2C marginalization requires storing each
C2V message for use in the next iteration. To save memory,
only the sign bit and MSB of each C2V is stored. A scheduler
contains all the parity check matrices and feeds the shift values
into the shifters. Each node is completed in a single cycle (the
design is not pipelined), so the total cycles per iteration is
roughly the number of subblocks in a matrix.

B. Turbo Decoder

The turbo decoder performs 4-way parallel decoding on
32-bit windows. Within each parallel decoder group, “Dummy
betas” are first calculated to initialize the beta (reverse) trellis
traversal. Then the final dummy beta value initializes the real
beta traversal for the previous window, with the betas for
that window stored in a small scratchpad memory. The alpha
(forward) trellis traversal allows the immediate calculation
of the output LLRs for that window using the beta results
stored in the scratchad (pipelining leads to a latency of several
cycles). These three sets of trellis traversals can take place in
parallel, as shown in the schedule in Figure [5] The decoder
then writes these LLRs back to memory to be interleaved and
used in the next half-iteration.

IV. COMBINED ARCHITECTURE

Some parts of each decoder are very specialized and diffi-
cult to reuse. The LDPC decoder has cyclic shifts of sizes 27,
54, or 81; these shifts have no counterpart in the turbo decoder
as the interleaver is a permutation and changes with blocksize.
The LDPC decoder also has many small memories for message
marginalization and accumulation, whereas turbo has a few
small memories as scratchpads for each window. However,
each algorithm contains arithmetic elements in common. We

in1 sign bi

. B I R
in2
—
out1
in3
mode out2
in4

sign bit

Fig. 6: Combined ACS units for LDPC and turbo. For LDPC,
inl is the previous cycle’s first minimum (outl) and in4 is the
previous cycle’s second minimum (out2). The V2C message
is in2 and in3 is unused. For turbo, outl is the max of in1 and
in2 and out2 is the max of in3 and in4.

f LDPC / \

Turbo \

LLRs
from
Front
LLRs — shifters T Alpha/ Branch channel
from shifters €T Beta € Metric
channel 81 81 Units Unit
Variable Check
Nodes Nodes
le—] Back LLR
T et Lo
Shifters Unit Interleaver

N N /

Fig. 7: Combined architecture with shared ACS units. For both
modes, LLRs are read from an external memory. The turbo
decoder processes four windows in parallel.

exploit this fact to share hardware between the two decoder
implementations.

A. Common Elements

The add-compare-select (ACS) units found in the check
nodes of the LDPC decoder and the max* operation of the
turbo decoder were identified as common elements between
the two decoders. Our design does not share the first adders
in the turbo decoder that sum «, 3 and ~, and has a simpler
check node, allowing for two max™* units from every check
node. Figure [6] shows block diagrams showing how the ACS
functions in LDPC or turbo mode. The LUT correction for
max* was not implemented for this design. A similar hardware
combination was described by [5], although their approach
differs in that their design uses one check node for a single
max™* operation.

B. Combined Architecture

The combined architecture shown in Figure [7] shares the
ACS units for the LDPC decoder’s check nodes and the turbo

decoder’s max units. One variable node group of 81 variable
nodes is connected through front and back shifters to the check
nodes. The variable node group and shifters are controlled by a
scheduler that encodes the various parity check matrices from
the standard. Each variable node must store the accumulated
C2V messages for the current iteration, the old accumulated
C2V messages from the previous iteration, and the C2V and
V2C messages for marginalization. Our implementation just
stores the top two C2V message bits and the V2C sign
bit. Thus the total memory per variable node is about 78
bytes. Marginalization and conversion back and forth between
sign-magnitude and two’s complement formats contribute the
significant combinational logic overhead seen in the variable
nodes.

The three-input min blocks in LDPC mode become two
max blocks in turbo mode (see Figure [6), so there are enough
for 162 2-input max blocks. Each parallel turbo decoding
group uses 8 max operations for each of the three trellis
traversals, and 14 for the reductions to calculate the final
LLRs., for a total of 38 operations per parallel group. The 162
available max blocks are therefore sufficient for four parallel
windows. An interleaver and LLR unit load LLRs from the
channel through our external memory.

V. HARDWARE RESULTS

We implemented a parameterized generator for our com-
bined LDPC-turbo decoder in Chisel. All memories were
implemented as flip-flops. We believe that minor bugs persist
in both the LDPC and turbo implementations, so we are not
able to present bit-error plots for decodings completed by the
hardware.

This design was synthesized with 6-bit LLRs. We also
synthesized the LDPC and turbo decoding blocks individually.
A summary of these synthesis results are shown in Table [l
as reported by Design Compiler. The area of the combined
decoder is dominated by the 81 LDPC variable nodes, each
of which contains a small amount of memory. Much of the
turbo decoder area is similarly filled by the beta scratchpad
memories, which could be more easily implemented as 8T
SRAMs. The critical path of the combined decoder runs
through the variable nodes, shifters, and check nodes, as the
design is not pipelined. Note that the turbo interleaver was not
synthesized as part of the design.

Throughput estimates are shown in Table These es-
timates assume 10 iterations per codeword, and are based
on the largest block size for each code (1944 for LDPC,
6144 for turbo). Note that the turbo decoder can operate
at a faster frequency than the LDPC decoder in the current
implementation. The energy calculations assume that only the
part of the design used for the particular decoding algorithm
consumes power, and so use the standalone power results from
Table [

VI. FUTURE WORK

Because the area of our current design is dominated by
LDPC-specific units, we believe that our LDPC architecture
could be optimized further. More variable node groups could
be added to improve throughput and allow for a larger clock
period. Adding more variable node groups would also increase

TABLE I: Synthesis Results

Design Area (mm2) Clock Period (ns) Power (mW)
Combined Decoder 1.08 2.05 370
Variable Nodes 0.85 - 301
Standalone LDPC 1.01 2.02 347
Standalone Turbo 0.13 1.04 67
TABLE II: Throughput and Energy
Code Throughput (Mbps) | Energy (nJ/bit)
LDPC @ 500MHz 820 423
Turbo @ 500MHz 90 370
Turbo @ 1GHz 180 370

the available ACS resources in the check nodes, allowing for
more turbo windows to be processed in parallel.

The LDPC critical paths occur between the variable nodes
and check nodes, passing through the shifters. One simple
pipelining solution would be to process two frames at once,
alternating between them. This would permit pipeline registers
within the shifters, improving throughput substantially.

Another way to share more resources between the two
decoders would be to share the resources in the variable
nodes. The variable node memories could double as scratchpad
memories for the turbo reverse trellis traversals, and some
could be implemented as multiported SRAMs, further reducing
the area of the design. Sharing some of the arithmetic units
from the variable nodes to perform some computations for the
turbo decoder, such as the branch metric unit computation,
may also be worthwhile, as long as such sharing them does
not dramatically increase the complexity of the already large
variable nodes.

VII. CONCLUSION

We designed a combined LDPC/turbo decoder that shares
hardware resources to reduce area while still achieving rea-
sonable throughput and efficiency. The area of the design is
dominated by the LDPC decoder’s variable nodes. We have
therefore demonstrated that a lightweight turbo decoder can
be incorporated into an LDPC decoder with relatively little
overhead.

ACKNOWLEDGMENT

The authors would like to thank Bora Nikolic, Sriram
Sundararajan, and Matt Weiner for fruitful discussions and
useful advice.

REFERENCES

[1] I C. Society, IEEE Std 802.11n Part 11 Amendment 5: Enhancements
for Higher Throughput.

[2] 3GPP, “E-UTRA: Multiplexing and channel coding (Release 12),” 2013.

[3] Y. Sun,J. R. Cavallaro, Y. Zhu, and M. Goel, “Configurable and Scalable
Turbo Decoder for 4G Wireless Receivers.”

[4] M. Weiner, B. Nikoli, and Z. Zhang, “LDPC Decoder Architecture for
High-Data Rate Personal-Area Networks,” pp. 1784-1787, 2011.

[5] T.S. V. Gautham, A. Thangaraj, and D. Jalihal, “Common Architecture
for Decoding Turbo and LDPC Codes.”

	Introduction
	Background
	LDPC Decoding
	Turbo Decoding

	Decoder Architectures
	LDPC Decoder
	Turbo Decoder

	Combined Architecture
	Common Elements
	Combined Architecture

	Hardware Results
	Future Work
	Conclusion
	References

