Adaptive MIMO Decoder

EE290C Project Final Report

Antonio Puglielli and Simon Scott

I. OBJECTIVES

IMO refers to the use of multiple transmit antennas and
multiple receive antennas to spatially multiplex data
streams over a channel. This channel is often represented by
a complex matrix (H), and can change over time. Although
MIMO can be used to increase reliability of a link, this
project is only concerned with the use of MIMO to improve
throughput. Furthermore, only the single user case will be
considered, meaning that all the receive antennas are assumed
to be on the same hardware and can share information.
The objectives of this project are therefore to develop a
VLSI implementation of a MIMO decoder that:

o supports the antenna configurations and modulation
schemes used in both 802.11ac and LTE.

o meets both the 802.11ac and LTE throughput require-
ments.

« is able to adapt to changing channel conditions.

o is both compile-time and run-time configurable.

II. ALGORITHM EVALUATION AND SELECTION

The two main classes of MIMO detection algorithms are
those of linear and nonlinear algorithms. Linear detection
algorithms refer to techniques which form the detected sym-
bols as a linear combination of the received data. Nonlinear
detection schemes are more complex, but usually achieve
better performance.

The maximum likelihood (ML) receiver is a nonlinear
scheme which is theoretically optimal. Based on the received
data and the channel estimate, it computes the most likely
transmitted vector. However, its complexity scales exponen-
tially with the MIMO order since the number of different
transmit sequences increases exponentially with the number
of spatial streams. Sphere decoding is a simplification of this
which achieves cubic complexity by restricting the search
space to a sphere of finite radius.

On the other hand, linear schemes require lower compu-
tational complexity but usually entail a loss in performance.
These detection methods attempt to separate out the transmit-
ted streams by linearly filtering the received vector. In zero-
forcing (ZF) detection, the receive filter is chosen to minimize
inter-stream interference. Though this technique performs well
in interference-limited scenarios, there is a substantial loss in
performance when noise dominates. Therefore, it is better to
use the minimum mean square error (MMSE) receive filter
since it minimizes the total mean square error in the detected
vector. In the high SNR limit, this converges to the ZF receiver.
Finally, the MMSE receiver can be combined with successive

interference cancellation (SIC), where each spatial stream is
successively decoded and its contribution subtracted from the
received data. Therefore, streams decoded later in the process
see a diminished amount of interference. This technique also
theoretically achieves the full capacity, though in practice its
performance is reduced compared to ML because it is more
sensitive to errors in decoding the initial streams [1].

An additional metric of interest is the ability to track
channel variations. Since real channels vary between training
sequences, it is desirable for the MIMO receiver to track these
channel changes and maintain good performance. It is of little
use to invest in complex and power-hungry receiver hardware
if this performance gain is lost in time-varying channels.
Consequently, it is useful to make these MIMO detection
schemes adaptive to the channel. This is easiest to accomplish
with a linear detection scheme since the receive filter can be
easily adapted using a well-known technique such as least
mean squares (LMS) or recursive least squares (RLS) [2], [3].
When the adaptive process is seeded with the initial MMSE
receive filter, the convergence is immediate and tracking ability
is improved.

To evaluate the performance of these algorithms, we simu-
lated the uncoded symbol error rate (SER) versus SNR curves
for a 4x4 MIMO system. Figure 1 shows the performance
achieved by the different receive techniques in a static 4x4
channel realized using the 802.11n channel model B. As
expected, the ML and sphere decoding achieve the best
performance, and unseeded LMS (which uses a very long
training sequence) the worst, while seeded (MMSE) LMS and
direct processing (MMSE) achieve very similar performance.
Figure 2 shows the same simulation conducted with a time-
varying 802.11n model B channel using a maximum doppler
shift of 3 Hz. Here we can see that all receive schemes suffer
a substantial performance loss, but that seeded LMS achieves
an SER comparable to that of ML for high SNRs due to its
ability to track the channel variations.

Adaptation can be combined with the MMSE linear detec-
tion scheme into the following algorithm:

1) Estimate the channel matrix based on a priori known

training sequence.

2) Compute initial MMSE receive filter

3) Begin processing received samples using receive filter

matrix.

4) Adapt receive filter using LMS algorithm to track chan-

nel variations.

We implemented an LMS-MMSE MIMO decoder since this
has relatively low implementation complexity but can show
the usefulness of this technique and is easily extendable to

o BER s SNR for different MIMO detection schemes
10 T T T T
10"
2 —MS
® 107 —— LMS seeded
B —ML
5
2 3 sphere
@ 107 :
= direct
a
£
-
10 ¢
10°¢
106 L 1 L
0 5 10 15 20 25

SNR(dB)

Fig. 1. SER vs SNR for different MIMO detection schemes with a static

channel

Fig. 2. SER vs SNR for different MIMO detection schemes with a time
varying channel (doppler shift of 3Hz)

more complicated receive processing. For example, MMSE-
SIC detection can be accomplished by adaptively estimating
the channel and performing the decoding one stream at a time
instead of simultaneously.

III. HARDWARE ARCHITECTURE

The architecture of the Adaptive MIMO Decoder is shown
in Figure 3. The host configures the decoder by writing to the
configuration registers, setting parameters such as the number
of antennas and the modulation scheme. Since different stan-
dards use different training sequences, the host then needs to
write the current training sequence to the training memory.
Once complete, the host writes a 1 to the start register, and
begins sending samples to the RX Data Queue.

The Channel Estimator uses the training sequence and the
first few received samples to estimate the channel matrix H.
This channel matrix is then sent to the Initialize Weights
module, which computes the initial decoder matrix W_seed.
The Adaptive Decoder uses this W_seed as a starting point
for its decoder matrix W. The Adaptive Decoder decodes the
samples in the RX Data Queue and writes the decoded symbols
to the Decoded Data Queue. For each set of samples, the
Adaptive Decoder also updates the W matrix.

Finally, the host reads the decoded symbols from the

Decoded Data Queue. Each of the different modules in the
design will now be described in more detail below.

data_d2h

[ready)
-

data_h2d | .| [bits
kst T [valial]
‘data_in data_in
Config Registers Training Mem
addr addr data_out e

Gata_in ready
Rx Data Queue
dequeue we

dequete
Decoded Data Queue
enqueue

address

Channel matrix H

17 Channel Estimator 4

Initialize 3 a
Config Registers Weights Matrix Engine
N
Nrx
pete Adaptive Decoder

W seed

(5.1 PN V) I P o

SNR_linear
start

Fig. 3. The hardware architecture of the LMS Adaptive MIMO Decoder

A. Matrix Engine

The Matrix Engine computes the complex vector-matrix
multiply between an input vector V and an input matrix
M. The input matrix M has size Nyansmit_antennas X
Nreceive_antennas- Since the Adaptive Decoder needs to de-
code a new set of antenna samples every cycle, the Matrix
Engine needs to compute the vector-matrix multiply in a single
cycle. For the 4x4 MIMO case, it does this using four 4-
element dot-product units which operate in parallel. However,
if only 2x2 MIMO needs to be supported, then only two dot-
product units will be created at compile time.

Input
M
[row 0]

Input
M

[row 1]

Input
M

[row 2]

Input
M

[row 3]

Fig. 4. Design of the matrix engine

B. Channel Estimator Module

The channel estimator module uses the known training
sequence as well as the corresponding received symbols to
compute the initial channel estimate. We have used a training
sequence which is orthogonal in space and time, mimicking
the general format of the 802.11ac VHT-LTF fields but not
the specifics. Since the training sequence is an orthogonal
matrix, the channel estimate can be obtained simply from a
matrix multiplication of the training sequence matrix with the
received signals matrix. The channel estimator module uses
the matrix engine to perform this computation and then sends
the result to the weight initialization module.

2 Rx 5 —
Matrix 2 —
Inverse
C::'::?el Matrix o~ Matrix Weights
ix) :
Multiply Multiply seed
— LT
Matrix 4
Inverse [*
aF
Matrix EngineJ
Bus =By
Fig. 5. Weight initialization module

C. Initialize Weights Module

The initialize weigts module computes the MMSE receive
filter using the initial channel estimate, H:

W = (H"H +o°1)~'H"

The main operations required are two matrix multiplications
and one matrix inversion. The matrix multiplications are
performed using the matrix engine, while a specialized 2x2
matrix inversion hardware is contained within this module.
For 2x2 MIMO cases it is sufficient to simply use this module,
while for larger MIMO orders the matrix is inverted blockwise
using the 2x2 matrix inversion engine and small additional
hardware.

1) 2x2 Matrix Inversion: For 2x2 matrices, the inverse can
be computed efficiently using the explicit formula:

—ZL12 }
T11

{ T11
T21

This calls for two complex multiplications and a subtraction
(to compute the determinant) and four complex divisions.
Since the complex division requires a large and power-hungry
hardware, we use a single complex divider (pipelined in three
stages) which is multiplexed to perform the four divisions per
2x2 matrix. Thus, inversion of a 2x2 matrix takes 13 cycles
(including one for determinant computation).

€22
—Z21

T12

Z22] T11T22 — T12T21 {

2) Inversion of Larger Matrices: To invert larger matrices,
the 2x2 matrix inversion hardware and the matrix engine are
used. The inversion is performed blockwise:

E

where

—A~'Bp!
P—l

A7l + A7IBPTICAT!
—-p-lcAT?

P=D-CA™'B

For a 4x4 matrix inversion, this requires two 2x2 matrix
inversions as well as several 2x2 matrix multiplications, which
are performed using their respective dedicated hardware. We
currently have not implemented 3x3 matrix inversion, but it
can accomplished with minimal hardware overhead by using
this same approach.

D. Adaptive Decoder Module

The task of the Adaptive Decoder module is to decode the
samples (received from the antennas) into the symbols for
the independent data streams. It does this by multiplying the
received samples (vector x) with the decoder matrix W, using
the Matrix Engine. This is shown in Figure 6. The resulting
W vector is then converted into a vector of symbols y using
a simple slicer to find the nearest constellation points. The
error between Wz and the decoded symbols is computed
and multiplied by a step-size parameter p.

This weighted error is used to update the decoder matrix
according to the following equation:

Whext = W — x X (error - p)

Note that « x (error-) is the vector cross-product between
received samples = and the error weighted by p.

W matrix init
seed

[4x4 ma]

Decoded
symbols

[4x1 vec]

W matrix

update registers

Matrix
Engine

W - x*error*n

received
samples

[4x1 vec]

x
[4x4 mat]

Vector
Cross
Product

error=Wx -y

[4x1 vec]

parameter [
error*p

Fig. 6. The adaptive decoder module

E. Evaluation of Bitwidths

The hardware architecture described above was imple-
mented in Chisel [4]. In order to verify correctness and
determine the optimum bitwidths to use, the Chisel implemen-
tation was tested using test vectors taken from the MATLAB
simulations (as described in Section II). The symbol error rate
versus SNR plots for different bitwidths, using a static channel,
are shown in Figure 7. This plot also includes the results from
the MATLAB simulation for comparison. Similarly, Figure 8
shows the SER vs SNR plots for a slowly changing channel.

SER vs SNR for Static Channel

1.0E+00
1.0E-01
1.0E-02
1.0E-03

1.0E-04 \

1.0E-05

—e—Matlab double
Chisel 24b
Chisel 20b

1.0E-06 Chisel 16b

1.0E-07

1.0E-08 °
0 5 10 15 20 25 30 35

SNR (dB)

Fig. 7. SER vs SNR curves for Chisel implementations with different
bitwidths (static channel)

SER vs SNR for Dynamic Channel (802.11n model B, pedestrian
doppler)

1.0E+00
S~

1.0E-01

10E.02 \
N\

—e—Matlab double

Chisel 24b

1.0E-03

Chisel 20b
Chisel 16b

1.0E-04
1.0E-05

1.0E-06
0 5 10 15 20 25 30 35

SNR (dB)

Fig. 8. SER vs SNR curves for Chisel implementations with different
bitwidths (dynamic channel)

For the static channel, the 20 bit and 24 bit Chisel imple-
mentations very closely track the MATLAB simulations, while
the 16 bit simulation is completely incorrect. In the dynamic
channel case, higher precision is needed to track the changing
channel, and so only the 24 bit implementation is able to match
the performance of the MATLAB simulation. Therefore, 24
bits was selected as the desired bitwidth for the design.

The poor performance at lower bitwidths is caused by
arithmetic overflow during the matrix inverse operation in the
Initialize Weights module. Better performance can be achieved
at lower bitwidths if saturating arithmetic or floating-point
were used. Unfortunately, neither of these two features are
currently supported in Chisel.

IV. SYNTHESIS OPTIONS AND CONSTRAINTS

The clock rate at which the design was synthesized was de-
termined by maximum throughput requirements for 802.11ac
and LTE. The maximum downlink rate for 802.11ac (80MHz
channel) is 278 000 symbols/sub-carrier/antenna/second [5].
With 234 sub-carriers, this translates to 70 million sym-
bols/second/antenna.

LTE has a maximum symbol rate of 14 000 symbols/sub-
carrier/antenna/second [6] and with 1200 sub-carriers, this re-
sults in a throughput of 16.8 million symbols/second/antenna.

If the sub-carriers are decoded sequentially (i.e. time-
multiplexing the decoder between the sub-carriers), but all
the antenna inputs are decoded in parallel, the Adaptive
MIMO Decoder will need to be clocked at 70MHz (i.e. at the
802.11ac symbols/antenna rate). However, it is also possible
to process multiple sub-carriers in parallel. The advantage
of this approach is that all the sub-carriers can share (on
a time-multiplexing basis) common Channel Estimation and
Weight Initialization modules, as these modules only run at
the beginning of each packet. The only modules that therefore
need to be duplicated are the the Matrix Engine and the
Adaptive Decoder.

Table I therefore shows the required clock rate for paral-
lelism levels of 1, 2 and 4. Here, the level of parallelism
indicates both the number of sub-carriers that can be decoded
in parallel, as well as the number of instantiations of the
Matrix Engine and Adaptive Decoder. This means that all three
scenarios shown in the table have identical throughput.

TABLE 1
VLSI CLOCK RATE FOR DIFFERENT LEVELS OF PARALLELISM

Number of parallel sub-carriers Clock Rate
1 70 MHz
2 35 MHz
4 17.5 MHz

Estimating the channel matrix at the beginning of each
packet and computing the resulting weight matrix takes only
50 clock cycles. Since it takes at least 45000 cycles to decode
an entire packet, the impact of these intialization operations
on latency and throughput was easily minimized with a small
amount of buffering and a very slight increase in clock speed.

V. SYNTHESIS RESULTS

The Chisel designed was synthesized at the three clock rates
shown in Table I. For the 35 MHz and 17.5 MHz cases, the
Matrix Engine and Adaptive Decoder modules were replicated
the required number of times. The results, for a 4 antenna
decoder, are shown in Figure 9. Again, it must be emphasized
that all three synthesized versions have the same throughput,
and are able to meet the requirements for 802.11ac and LTE.

Power vs Area for 1, 2, and 4 parallel decoders
180
17 MHz @
160
140

—~ 120

E 100 o
% 80 7OMHz o o 24b
60 20b

40

20

0

0 02 0.4 06 08 1 12 1.4 16
Area (mm?)
Fig. 9. Power vs area for different levels of parallelism

It is quite clear that the 24-bit 70MHz version results in
the smallest area (0.6mm?) and lowest power (78mW). While
the 20-bit version does result in a slightly smaller design, it
cannot be used due to poor reliability in changing channel
conditions. While lower power figures at the slower clock rates
could be achieved if voltage scaling was used, this feature was
not available to us.

Extrapolating from Figure 9 shows that even smaller
area/power figures could be obtained if the data streams from
the 4 antennas were processed sequentially (rather than in
parallel, as they are currently done), and the clock rate was
increased accordingly.

The power consumed by each module in the MIMO decoder
is shown in Table II and illustrated in Figure 10. These show
that almost half the power is consumed by the initialization
modules: Channel Estimator and Initialize Weights. Since
these modules are used for < 0.1% of the total operation time,
power gating them will reduce the average power consumption
to 42mW.

TABLE I
BREAKDOWN OF POWER BY MODULE

Module Submodule Power (mW)
Channel Estimator 2.13
Initialize Weights Mat4 Inverse 3.96

Mat2 Inverse 24.8

Module total 33.7
Matrix Engine 25.4
Adaptive Decoder 15.1
Queues 1.81
Total 78.14
Total without
initialization modules 42.31

Power Breakdown by Module

Queues
Adaptive

Decoder

Matrix Engine

Channel

Estimator Initialize Weights

Fig. 10. Power of LMS MIMO Decoder by module

VI. CONCLUSIONS AND FUTURE WORK

In this project, we have demonstrated an adaptive LMS-
MMSE MIMO decoder that can achieve the throughput re-
quirements of LTE and 802.11ac using QPSK modulation. The
final design takes up 0.6mm? of area and consumes 42mW
when including power gating of the initialization blocks.
By exploiting the LMS adaptive loop, this design is also
able to track slow channel variations while maintaining good
performance.

There are several areas of further work that could improve
this design:

1y

2)

3)

4)

5)

Implement power gating to turn off the initialization
modules when they are not in use.

Reduce the bit widths in the main adaptive decoder,
while keeping the 24-bit words in the initialization
blocks (where the matrix inversion is sensitive to pre-
cision errors), in order to decrease area and power.
Furthermore, the required bit width in the inversion
block could also be reduced by using floating point or
saturating arithmetic.

Evaluate energy reduction techniques when using paral-
lel decoding modules. Since each module operates at a
lower clock rate, it should be possible to reduce energy
per decoded symbol by reducing the supply voltage.
Design a control loop to dynamically select the LMS
step size based on the time scale of channel variations.
Integrate this MIMO receiver with a channel decoder
and use the decoder hard decisions to adapt the receive
filter.

(1]
(2]
(3]

[4

—

(5]
(6]

REFERENCES

D. Tse, Fundamentals of Wireless Communication.
sity Press, 2005.

J. Litva and T. Lo, Digital Beamforming in Wireless Communications.

Artech House Publishers, 1996.

R. Adve, “Optimal Beamforming. ECE1515S: Smart

Antennas Course Notes,” May 2007, [Online]. Available:
http://www.comm.utoronto.ca/ rsadve/Notes/BeamForming.pdf.
J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis,

J. Wawrzynek, and K. Asanovié, “Chisel: Constructing hardware in a

scala embedded language,” in Proceedings of the 49th Annual Design
Automation Conference, ser. DAC *12. New York, NY, USA: ACM,

2012, pp. 1216-1225.

M. Gast, 802.11ac: A Survival Guide.
L Poole, “LTE MIMO: Multiple Input Multiple

Output Tutorial,” May 2014, [Online]. Available:
http://www.radio-electronics.com/info/cellulartelecomms/
lte-long-term-evolution/lte-mimo.php.

Cambridge Univer-

O’Reilly Media, 2013.

