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Abstract— The architecture of a cross-correlator for a synthesis radio telescope with N>1000 antennas is 
studied with the objective of minimizing power consumption.  It is found that the optimum architecture 
minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure 
and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators 
among baselines.  A straw-man design for N = 2000 and 1 GHz bandwidth, based on ASICs fabricated in 
a 90 nm CMOS process, is presented.  The cross-correlator proper (excluding per-antenna processing) is 
estimated to consume less than 35 kW. 

I.  INTRODUCTION 
Power consumption is a major limitation in the implementation of a very-large-N array, where 2N 

is the number of signals that must be cross-correlated (N antennas or stations, each receiving 2 
polarizations).  When N is sufficiently large, power consumption is dominated by the signal processing 
electronics for cross-correlation, which grows as N 2 while nearly everything else grows as N.  In this 
memo, "very large" means N>1000. 

It was shown in 2002 [14] that such a correlator (N=2560, bandwidth B=1600 MHz) could be 
built at reasonable cost in the technology then current (180 nm CMOS), but in that case the monetary cost 
of construction, rather than power consumption, was considered the primary limitation.  More recently, 
another straw man SKA correlator design was proposed [15] (N=2980, B=1 GHz), but its architecture 
leads to an unreasonably high estimated power consumption of 2 MW for the cross-correlation electronics 
alone.  Neither of these studies considered the possibility of multi-beam antennas, which requires 
duplicating the correlator for each beam and hence multiplying the power consumption by the number of 
beams.  Here we show how it is possible to do much better. 

At low frequencies, very-large-N arrays are generally not needed, even to produce an SKA-scale 
telescope.  When wavelength λ is ~1 m or more, it is cost effective to use dipole-like antenna elements 
whose size is ~λ/2.  Assuming that the objective is to achieve a given survey speed [1], the optimum 
design combines many such elements into stations by beamforming so that N is the number of stations.  In 
this way, N~200 is sufficient to achieve the specifications of SKA-low (70 to 300 MHz) [2].   

As frequency increases, the use of elements ~λ/2 in size becomes rapidly inefficient because 
effective area is proportional to λ2 while element field of view remains unchanged.  The number of 
elements needed to achieve a given survey speed increases as λ–4 and we are soon overwhelmed by the 
cost and power consumption of per-element electronics such as low-noise amplifiers and analog-to-digital 
converters.  A cost-effective design then requires elements many wavelengths in size, such as reflector 
antennas.  As element size d increases, its effective area Ae grows as d2 and element field of view Ω 
(beamwidth) decreases as d –2, but the contribution of that element to the survey speed (proportional to Ae

2 

Ω) grows as d2, reducing the number of elements needed.  Each element's electronics thus supports more 
collecting area, so it need not dominate the cost.  There is an optimum element size that depends on a 
tradeoff between the cost of the structure needed to implement the antennas and the cost of the 
electronics.  At present prices, and assuming that cross-correlation is not the dominant cost for 
electronics, reflector antennas with a diameter d between 6 m and 18 m appear to be optimum.  But 
combining these reflector antennas into stations is not so effective as it is for dipole-like elements; this is 
because their beams are relatively small so they must be mechanically steered to point at different parts of 
the sky, and this prevents them from being too close to each other.  Instead of combining them, it is 
arguably cost-effective to install multiple feeds on each reflector so as to create multiple beams, 
�������������������������������������������������������������
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increasing Ω.  Thus, even though we have kept the number of elements from getting too large, we must 
cross-correlate nearly all of them.  This leads to designs for SKA-mid (300 MHz to 10 GHz) with N=2000 
to 3000 reflector antennas [2].  This is the situation to which the present memo applies2. 

The main point of this memo is that considerable care must be taken in the design of a correlator 
for a very-large-N array if the power consumption (and perhaps also monetary cost) of that correlator is 
not to be a major obstacle to its construction and to the operation of the whole array.  Consider, for 
example, the correlator for the ALMA telescope, which is the largest radio astronomy correlator 
constructed to date.  It supports N=64 and bandwidth B=8 GHz.  A reasonable measure of a correlator's 
size is S=N 2B, which is 3.28�1013 Hz for ALMA.   The cross-correlation part of this correlator (not 
including its per-antenna processing) uses about 65 kW [3].  Now consider a possible correlator for SKA-
mid with N=2000 and B=1 GHz, giving S=4.0�1015 Hz.  If we simply extrapolate the ALMA power 
consumption in proportion to S, we predict that an SKA correlator built with the same architecture and 
technology will use 7.9 MW.  If multi-beam antennas are used, then this must be multiplied by the 
number of beams. 

It is shown here that the SKA correlator can be built so as to use several orders of magnitude less 
power than this.  Such a low-power correlator can be built using current technology, without waiting for 
Moore's Law to make it easier.  To achieve this, it is necessary to choose the correlator's architecture 
carefully. 

At its core, a correlator performs multiply-accumulate (MAC) operations on all pairs of input 
signals.  The rate at which it does this is N(2N+1)B (assuming complex signals and Nyquist-rate 
sampling), and that rate is the same regardless of architecture.  However, a practical correlator must do 
other operations as well.  In particular, it needs input and output (I/O) operations for external connections 
as well as for internal signals (since a large correlator cannot fit in a single device or box), and it needs 
memory operations because in most architectures it must store data temporarily in buffers.  Memory and 
I/O operations typically use much more energy than MAC operations, and their rates are strongly 
dependent on architecture. 

This memo considers only the cross-correlator proper, ignoring the processing that must be done 
on the signals separately before they are combined.  This is justified by the assumption that cross-
correlation is the dominant power consumer at very large N.  It is assumed that the per-signal processing 
includes a uniform filter bank so that the cross-correlation work can be partitioned by frequency ("FX" 
style).  The cost of re-ordering samples between the filter banks and the cross correlator ("corner turner") 
is also ignored on the assumption that a memoryless corner turner [4] with negligible power consumption 
can be used.  At the correlator's inputs, each signal is assumed to be a discrete-time sequence of coarsely 
quantized samples, each consisting of the real and imaginary parts of a complex number.  The correlator 
then performs complex MAC (CMAC) operations. 

II.  CORRELATOR TAXONOMY 
Figure 1 provides a classification of correlator architectures as a hierarchical tree.  The final 

nodes, highlighted in the figure, represent five distinct architectures3.  At the top level, we distinguish 
between a matrix structure, where MAC elements are arranged in a triangular array, and a pipeline 
structure, where MAC elements are arranged in a chain with delays between them; this distinction is 
further explained below (see Figure 2).  In the matrix structure, it is possible to arrange that each signal 

�������������������������������������������������������������

2 This comparison of SKA-low and SKA-mid has been somewhat simplified because the SKA's science-driven 
specifications have evolved in such a way that the required survey speed is not constant with frequency, and there 
are some objectives for which point source sensitivity is a better figure of merit than survey speed.  Nevertheless, it 
turns out that only moderate N is needed at low frequencies and very large N is needed at higher frequencies, where 
the boundary is near 300 MHz.�
3 It is not claimed that this classification includes all possibilities, but it is believed to span most of those that involve 
cross-correlating all signals.  It excludes FFT-based methods that achieve a similar result under special 
circumstances, such as [17]. 
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pair (baseline) is connected to a dedicated CMAC.  This is the first of the architectures (#1).  In all the 
others, each physical CMAC is time-shared among baselines so as to reduce the number of CMACs that 
must be built.  This is possible if each CMAC can operate faster than the signal bandwidth that it is 
processing.  Thus, if the bandwidth processed is b, where a filter bank has partitioned each antenna 
element's bandwidth B into multiple channels of bandwidth b, and a CMAC operates at clock rate f = xb, 
then that CMAC can be shared among x baselines. 

There are two ways of arranging the sharing of a CMAC among baselines.  First, the input 
samples from all antennas of the shared baselines can be written to a memory that holds enough samples 
for one correlation (i.e., one short-term integrating time of the correlator).  Samples for one pair of 
antennas are then read from the memory at rate f and sent to the CMAC.  At the end of the integrating 

Figure 1:  Correlator family tree.  Distinct architectures are highlighted.  #1 was used for ALMA, EVLA, and 
SKA Memo 127.  #4 is described in [5]. 
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time, the CMAC's accumulator is read out and then cleared.  Then samples for a different pair of antennas 
are read from the memory and correlated, continuing in this way until all x pairs have been correlated.  
The second method of sharing among baselines involves providing the CMAC with multiple integration 
registers, as illustrated in Figure 3.  In this method, no input buffer is required and the samples at the 
CMAC's inputs can be from a different pair of antennas on each clock.  On each clock, the CMAC reads 
an accumulation register, adds the product of the current samples, and writes the results back to the same 
accumulation register.  On the next clock, it uses a different accumulation register.  The most practical 
way to do this is to arrange the accumulation registers in a RAM of depth x and to increment the RAM's 
address on each clock.  After x clocks, the address returns to its original value and the input signals return 
to the original antenna pair, enabling the next product for that baseline to be accumulated.  After enough 
cycles have elapsed to complete an integration time, results for all x baselines are available in the RAM 
and can be read out.  The two methods correspond to architectures #2 and #3 in Fig. 1. 

In the pipeline structure, essentially the same two methods of CMAC sharing can be used, and 
these correspond to architectures #4 and #5 in Fig. 1.   

The general pipeline concept [5] involves sending samples from all 2N signals to the chain of 
CMACs serially, on a single bus, as shown in Fig. 2b.  We transmit a block of samples from the first 
signal, followed by a block from the second signal corresponding to the same time range, then a block 
from the third signal, etc.  The samples are sent to one input of every CMAC at the same time, but they 
are delayed by the length of the block before going to the other input of the second CMAC, then again by 
the same amount before going to the other input of the third CMAC, etc.  In this way, the first CMAC 
computes the correlation of each signal with itself; the second computes the cross-correlation of  
all pairs whose index numbers differ by 1; the third does those whose indices differ by 2; etc.  To 
compute correlations for all baselines, the arrangement must be a bit more complicated that shown in Fig. 
2, which is a simplification.  Some switches are needed so that each CMAC handles a different set of 
baselines for half of the time; see [5] for details.  With these switches, a chain of N+1 CMACs is 
sufficient to compute correlations for all N(2N+1) pairs.  On each clock,  N+1 products are computed in 
parallel.  After all 2N blocks of samples have been received, 2N(N+1)=N(2N+2) sets of products will have 
been computed; N of them are redundant.  The sharing factor x is thus fixed by the architecture at 2N. 

The difference between architecture #4 and #5 is in the length of the delay between CMACs.  In 
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#4, the delay is equal to the number of samples in one integration, so the block of samples from each 
signal must also be of that length.  After each block, the accumulators of all CMACs are read out and 
cleared.  This is similar to #2 in that samples for one integration of all signals are buffered before cross-
multiplication.  This is also the original pipeline architecture, first described in [5].  In architecture #5, 
each delay is for only one clock, so it is implemented as a single register.  A sample from a different 
antenna is received on each clock, and each CMAC has a bank of accumulators implemented in RAM as 
in #3.  (To my knowledge, this arrangement was first proposed by Sigman [6].) 

For any of the architectures, if the correlator's clock rate is fast enough, then it can also be shared 
among multiple frequency channels.  We assume that this is done by processing samples from one 
channel for one integration time, accumulating results for all baselines, reading out those results, then 
processing the same number of samples from another channel.  If the clock rate is xKb, then one CMAC 
can process x baselines and K channels (or bandwidth Kb) per integration interval.  However, unlike the 
sharing of CMACs among baselines, we do not regard their sharing among channels as creating distinct 
architectures.  This is discussed in more detail later (Section III.E). 

III.  A STRAW-MAN CORRELATOR FOR SKA-MID 
To evaluate the various architectures, consider a hypothetical correlator with these parameters: 

• Number of antennas:  N ≈ 2000 
• Nyquist bandwidth per signal:   B = 1.0 GHz 
• Channel bandwidth b = 100 kHz 
• Beams per antenna:  J = 100 
• Minimum integrating time:  τ = .065 s  (bτ = 6500) 
• Input sample quantization:  ws = 4 (2 bits real + 2 bits imaginary)4. 

This is reasonably representative of the requirements for SKA-mid5 [2].  The value of J is somewhat 
arbitrary and has no effect on the architecture, since a separate correlator must be built for each beam; we 
will actually consider a  J =1 design and assume that it will simply be duplicated  J  times. 

The integration time τ cannot be too small without making the correlator's output data rate 
unreasonably high, but if it is too large then excessively large buffers are needed to hold one integration 
of input samples.  The ratio of total output data rate of a cross correlator to its total input rate is given by 

 (wc/ws)(2N+1)/(2bτ) 
where wc is the accumlator word size (bits).  For wc = 32 b (16b real, 16b imaginary) and the other 
parameters as given above, we are allowing the output rate to be up to 2.5 times the input rate6. 

We will attempt to find practical implementations of this correlator using the five architectures, 
considering each separately.   

A.  Design Approach 
We begin by assuming that for such a large instrument the basic building block must be an 

application-specific (custom) integrated circuit (ASIC), and that any attempt to build it with general-

�������������������������������������������������������������

4 In the author's opinion, finer quantization than this is not justified, although ws = 8b (4b+4b) has been proposed for 
some SKA designs (e.g., [15]).   Using the latter would increase the power and IC count by a factor of 3 to 4 in most 
architectures.  A full discussion is beyond the scope of this memo.   
5 The actual implementation may be more complicated, since 50% of the antennas are intended to be outside a 5 km 
diameter core, with non-core antennas having single-beam feeds and being combined into stations of ~5 antennas 
each.  Here N is the total number of stations.  With ~3000 antennas altogether, we might want to correlate 1500 core 
antennas, each with b~100 beams, along with ~300 non-core stations, each with ~20 station beams.  This gives 
N=1800 and J=20 or 100, depending on baseline.  Our straw-man parameters, based on a uniform array of individual 
antennas, are thus somewhat simplified but nonetheless representative. 
6 Although this is difficult enough to handle, it could be worse.  For long baselines, large τ results in azimuthal 
smearing in the u,v plane and large b results in radial smearing, so it can sometimes happen that bτ < 6500 is 
desirable.  We assume that this will be handled by making τ smaller on those baselines and larger on others, and 
keeping b uniform, so that bτ ≥ 6500 on average.  In this memo, such complications are ignored. 
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purpose hardware like FPGAs, graphical processing units, or microprocessors would at present be 
impractical7.  The parameters of the ASICs are allowed to be different for each architecture, but to allow a 
fair comparison we insist that they all be built using the same process technology.  For this we choose 
CMOS with 90 nm gate length.  That technology is readily available today from various foundries.  It is 
not at the edge of the current state-of-the-art, where very large integrated circuits have been built in 65 nm 
CMOS and some have been built at gate lengths of 45 nm or smaller, but these more advanced 
technologies are currently much more expensive.  Their availability at reasonable cost can be confidently 
predicted for the future [7], but we choose to consider designs that are practical today. 

Although we will not attempt to derive detailed ASIC designs here, it is necessary to work out the 
top-level structure of each one in order to estimate the number required (and hence the total internal and 
external I/O) and the power dissipation.  In general we try to fit as much processing into each chip as 
possible, and to run it at the highest possible clock rate, subject to the constraints discussed below. 

Each ASIC is constructed from three basic components:  CMACs, transmitters and receivers 
(I/O), and memories.  For each of these, we need to know the amount of silicon area that it occupies and 
the energy that it uses for each operation.  For some memories (but in practice not for the other elements), 
static power consumption is also significant and should be taken into account.  These component 
parameters are obtained by scaling from existing designs, by reference to the literature, or by modeling, as 
described in Section III.C.  From these we calculate how many can fit on a chip8 in each architecture, and 
how fast the chip can run.  This determines how many chips are needed to implement the entire correlator, 
and multiplying this by the power per chip gives the system power. 

Several things are neglected here.  As mentioned in Section I, we are considering only the cross-
correlator proper, not the per-antenna-element processing that must precede it (LNA, digitizer, 
beamformer, filter bank, and signal transmission from remote antennas).  We also neglect certain 
infrastructure needed for the cross correlator, such as power supply, monitoring, and control circuits.  
These can be implemented with off-the-shelf parts and should add only a few percent to the chip count, 
but they may add as much as 30% to the power consumption.  All inter-chip I/O is assumed to be 
implemented in the same way (with high-speed serial links), even though board-to-board connections 
might use slightly more energy than chip-to-chip connections on the same board.  We do not attempt to 
estimate the board counts, although they can reasonably be inferred from the chip counts. 

B.  Chip-Level Constraints 
The processing that can fit within one chip is limited by one of several constraints.  We adopt 

limits to the chip's overall area, to its power dissipation, and to its the input and output data rates. 
B.1.  Area.  As the area of each chip increases, its cost increases faster because yield is reduced.  

Nevertheless, some very large and complex ICs are in production.  For example, Nvidia's GeForce GTX 
280 GPU (65 nm technology) has a die size of 576 mm2, and Intel's Core i7-920 processor (45 nm) has a 
die size of 283 mm2.   On the other hand, the ALMA correlator ACIC (250 nm) is 66.4 mm2 and the 
EVLA correlator IC (130 nm) is 40 mm2.  Somewhat arbitrarily, we adopt 200 mm2 as the maximum 
ASIC die size for this study.  This is a large chip, so this is an aggressive choice, but it is well within the 
present state-of-the-art, albeit relatively expensive. 

B.2.  Power.  A common rule of thumb is that the maximum power that can be dissipated by air 
cooling of an IC is 1W/mm2.  This assumes that dissipation is uniformly distributed across the chip area 
(no "hot spots"), which is reasonable in our case but not so for CPU or GPU chips.  The Nvidia and Intel 
ICs mentioned above have design power limits of 236W and 130W respectively, corresponding to 0.41 
�������������������������������������������������������������

7 Such notions are nevertheless popular because the sequence ASIC, FPGA, GPU, CPU results in monotonically 
increasing numbers of knowledgeable designers.  Eventually, by extrapolation of Moore's Law, construction of the 
straw-man correlator suggested here might become practical in general-purpose hardware, but by then a larger or 
more complex correlator is likely to be desired.  Because of this, the history of radio astronomy shows that nearly 
every digital processor that was considered large at the time of its design has been implemented with ASICs. 
8 "Chip" and "integrated circuit" (IC or ASIC) are used interchangeably in this memo.  Each is assumed to include a 
silicon die and a package with pins suitable for soldering to a printed circuit board. 
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W/mm2 and 0.46 W/mm2.  However, approaching this limit requires heat sinks that are far larger than the 
IC's package, so it might be achieved when there is only one high-power IC on a board, but not otherwise.  
Our system will require many ICs, so we need to be able to package them so that a significant number can 
be placed on each board. 

Consider this example.   Our 200 mm2 die will fit easily into a 42.5 mm square flip-chip ball grid 
array package; such a package is used by Xilinx for its Virtex 6 FPGAs to achieve a thermal resistance of 
θJC = 0.1 K/W from the chip to the package case [8].  A matching pin-fin heat sink 15 mm high [9] then 
achieves θCA = 1.1 K/W from case to air with 2.0 m/s (400 ft/min) air flow.  If the maximum junction 
temperature is 90C and the air temperature is 25C, the maximum dissipation is 65C/(θJC + θCA) = 54.2 W.  
A small fan integrated with the same heat sink reduces θCA to 0.70 K/W [10], allowing dissipation up to 
81.25 W.  This arrangement of ICs and heat sinks could in principle be close-packed on a PC board, but a 
pitch of 70 to 100 mm would be required to allow for board routing and supporting ICs.  This allows at 
least 16 ICs to fit on a moderate-size 400 mm square board. 

Based on this example, we set our ASIC maximum dissipation to 75W.  This is considered 
conservative.  More sophisticated cooling methods, including heat transfer by liquids or heat pipes, could 
allow similar board density while dissipating 100W to 200W per chip. 

B.3.  I/O Rates.  We assume that inter-chip I/O will use high-speed serial links at 2 to 10 Gb/s for 
data transfer.  Transceivers for such links are now commonly included in FPGAs, and embedded designs 
for ASICs have been published [11][12].  We choose the maximum input rate and maximum output rate 
for our ASIC to be 40 Gb/s (e.g., 8 links at 5 Gb/s for each direction).   Rates up to 20 Gb/s per link are 
probably feasible in 90 nm CMOS, and higher aggregate rates per chip could be supported, but with 
reasonable board-level packing of chips the inter-board connections could be difficult to handle if the rate 
per link or the aggregate rate per chip is much higher. 

C.  Processing Element Models 
The main processing elements of each ASIC—CMACs, I/O devices, and memories—are 

modeled using the parameters given in Table 1.  Several memory models are given because, as will be 
shown in the next subsection, the various architectures each require a different type and/or size of 
memory.  Details of the derivation of these parameters are given in Appendix A, which also discusses 
other processing elements commonly needed in radio telescopes. 

The energy consumption of a CMAC was derived by scaling from the actual energy used by 
existing ASICs, accounting for differences between their actual fabrication technologies and our 90 nm 
CMOS target and for differences between their actual correlation cell design and our 2b+2b complex 
MAC.  Three chips were considered, namely the ASICs designed for the ALMA correlator, the EVLA 
correlator, and the GeoSTAR satellite.  The energies derived were 2.45 pJ, 1.46 pJ, and 1.0 pJ, 
respectively.  We adopted 2.45 pJ for our model.  The die area per CMAC was obtained by scaling from 
the ALMA design.  The static power used by a CMAC is assumed to be negligible. 

For I/O transmitters and receivers, our model uses the results reported in [11].  Since this design 
was done in 90 nm CMOS, no scaling is needed.  Static power is assumed to be negligible.  To estimate 
the die area, I/O is assumed to be performed by serial transmitters and receivers operating at ≤6.25 Gb/s.  
However, since no more than 7 of each are needed to reach the maximum 40 Gb/s rates, and since a 
complete transceiver occupies 0.266 mm2 [11], the total die area is <2 mm2 and this is neglected in our 

Table 1:  Element Model Parameters For 90 nm Process Technology
Element 

(architecture) 
Die Area

mm2 
Energy/op

pJ 
Static power

W 
Max. clock

MHz 
CMAC (all) 0.006303 2.45 0 N/A
Transceiver, 6.25 Gb/s (all) 0.266 2.12 0 N/A
DRAM 600x177.5k (#2) 48.7 3750 0.593 127
SRAM 32x100 (#3) .0130 1.87 .000143 1165
SRAM 4x6500 (#4) .0488 2.97 .000102 695
SRAM 32x4000 (#5) 0.2428 14.0 .00499 661
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calculations. 
Memories are modeled using the CACTI simulator from HP Labs [13].  This on-line tool 

provides detailed simulation results for a variety of embedded memory types in user-specified sizes, 
including dynamic power, static power, and die area. 

D.  Design vs. Architecture 
Table 2 is from a spreadsheet [16] that calculates, for each architecture, the parameters of a 

suitable ASIC that meets the constraints of Section III.B along with the number of ICs needed to 
construct the straw-man SKA correlator (N ≈ 2000, B = 1 GHz).  This was done by choosing the number 
of CMACs per IC so that those CMACs and the memory devices and I/O needed to support them in a 
given architecture will fit within the 200 mm2 die area limit, then setting the clock rate (and hence the 
bandwidth per IC) so that the power dissipation is within the 75W limit.  An additional, indirect constraint 
was imposed for those architectures with embedded memories (2–5):  the clock rate cannot exceed the 
maximum cycle rate of the memories.  Finally, the aggregate input and output rates of the IC were 
calculated, and if necessary the clock rate was reduced to bring them within the constraints.  The table 
also shows the expression used for each calculation.  The limiting constrains are highlighted, as are results 
that fell far below the applicable constraint.  Table 3 is a summary of the main results. 

For the matrix architectures (#1–#3), the number of CMACs per IC was constrained to be square, 
resulting in the number of antennas  N  that can be processed by an integer number of ICs being slightly 
more than 2000 (see Table 3). 

If we could devote all of the 200 mm2 of die area to CMACs, we would have room for more than 
31,000 of them.  While that is a large number, it does not approach the 8 million needed to cross-correlate 
N=2000 antennas.  Thus for Architecture 1, which has a dedicated CMAC for each baseline, it is not 
possible to handle all baselines within one IC.  But for all the others, where CMACs are shared among 
baselines, we attempted to process all baselines in each IC.  Doing so minimizes I/O by enabling every 
input sample to be routed to one and only one IC.  This is in principle possible because each IC needs to 
process only a small part of the bandwidth (as little as one channel).  It turns out, however, that we are not 
able to achieve this within the 200 mm2 limit for Architecture 3 nor for 5, and we were just barely able to 
do it for Architecture 4.  Architectures 3 and 5 use RAM accumulators, which take up most of the die 
area, limiting the number of CMACs that can be accommodated.  Architecture 4 requires a RAM delay 
buffer for each CMAC, also dominating the die area.  For all architectures, the die size constraint was 
limiting (i.e., as much area as possible was used). 

For all architectures, the power dissipated by each IC remained far below the 75 W maximum 
because some other limit was reached first.   For #1 this was the input rate, which reaches 40 Gb/s at a 
clock frequency of 28.4 MHz due to the large number of CMACs (1762=30976).  Consequently, the 
power dissipated is only 2.25 W.  For #3, it was also the input rate.  For #2, #4, and #5, the clock 
frequency was limited by the speed of the memories. 

Architecture 1 results in the lowest system power.  Since a CMAC is dedicated to each baseline, 
it requires no memory for buffering.  It does require the most I/O, mostly for input, because the same 
sample must be transmitted to many ICs.  For all the others, the additional power results almost entirely 
from memory operations; I/O power was in all cases negligible9.  The pipeline architectures (#4 and #5) 
use the most power, and also require the largest numbers of ICs.  Those architectures are intrinsically less 
flexible because the re-use factor for each CMAC is fixed at 2N, even when the CMACs to process all 
baselines are split among multiple ICs. 

In Architectures 3, 4, and 5, the ASIC is dominated by memory, which uses 67%, 94%, and 98% 
of the die area and 64%, 83%, and 94% of the power, respectively, hence their high power consumption.  

�������������������������������������������������������������

9 This suggests that we could do better by relaxing the I/O rate constraint, but remember (Section III.B.3) that the 40 
Gb/s limit resulted from a concern about the feasibility of board-level interconnections rather than IC power 
dissipation.  A 25-IC board would have 1 Tb/s of input or output at 40 Gb/s per IC. 
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In Architecture 2, memory accounts for 26% of the die area and 19% of the power.  The input 
buffer is implemented as a single large memory, and it is constructed as dynamic RAM in order to 
achieve high density in spite of a penalty in speed and static power compared with static RAM.  Its  
system power is 18% higher than for  #1 (which has no memory) but it uses 1/3 the number of ICs and 
has 61% less total I/O rate per IC.  In this memo we have so far ignored monetary costs, concentrating 
instead on power consumption, but the smaller number of ICs (and hence of boards and interconnections) 
and lower I/O rate have a significant cost impact, and this is judged to be well worth the small increase in 
power over Architecture 1.  For that reason, Architecture 2 is considered the best choice for our straw-
man correlator, at least for an implementation in 90 nm CMOS under the adopted constraints. 

A more detailed discussion of the design considerations for each architecture is given in 
Appendix B. 

E.  Sharing CMACs Across Frequency Channels 
The results in Section III.D assumed that each CMAC can process more than one frequency 

channel by running at clock frequency  xKb, where x is the factor by which each CMAC is re-used for 
multiple baselines and K is the number of frequency channels it processes.  K was chosen to maximize the 
clock rate while achieving all constraints (power dissipation, I/O rates, and memory speed).  The CMACs 
can thus be shared among frequency channels, as well as among baselines.  However, unlike sharing by 
baselines, sharing by frequency channels does not result in distinct architectures. 

One way to share among frequency channels is by using a RAM accumulator for each CMAC 
(see Fig. 3).  This requires adding RAM accumulators of depth K to every CMAC in Architectures 1, 2, 
and 4 and expanding the size of those in Architectures 3 and 5 by a factor of K.  However, this would 
always be a poor choice compared with the alternative, which is to buffer τb samples (one integration) for 
each frequency channel of each signal and deliver those samples to the cross correlator, one channel at a 
time.  When the correlator has processed one integration for all baselines and one channel, and the 
resulting visibilities have been read out, the samples for the next channel are delivered, continuing until 
all K of the shared channels have been processed.  The correlator can do this by running K times faster 
than it would if all channels were processed in parallel. This is illustrated in Figure 4. 

The required buffering for this purpose is very different from the buffering implemented inside 
the correlators of Architectures 2–5.  This is because it is implemented for each signal (unlike the 
memories in Architectures 3–5, where there is one for each CMAC) , and because each sample is written 
to the buffer and read from the buffer only once (unlike the memory in Architecture 2, which is read 
multiple times).  Therefore the rate of writes and reads is proportional to N.  The buffers can be 

Table 3:  Summary of Designs by Architecture
���������	��
 � �  � �

Number of antennas, N ���� ���� ���� ���� ����

CMACs/IC, m ����	 ����� 
���� ���
 		�

Channels/IC, K ��� � �� 
 


Clock frequency, f , Hz ������� 
�
���� ������� ������� �������

Input rate/IC, b/s �����
� ���	��� �����
� 	������ 	������

Output rate/IC, b/s ������� 
��	�
� 
����
� 
����
� ���
���

Power/IC, W ���� ���� 
���� 

��� 

���

Die area, mm2

����� 
����� �����
 �����	 
		�
�

Memory power, % ���� 
���� 	���� ���	� ���
�

I/O power, % ���� ���� ��	� ���� ����

Memory area % ���� ���	� 	���� ����� �����

ICs to process all baselines, c 1 ��	 
 � 
 �

Total ICs in system, c ���
� ����� ����� 
����� ������

Total power, all ICs, W �
���� �����
 �	���� 

����� �������
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implemented independently from the cross correlator and we therefore consider them to be part of the per-
signal processing (F part of an FX correlator).  The RAM accumulator approach requires a write and read 
rate proportional to N 2, and the RAMs must be integrated with the cross-correlation ICs.  This would not 
increase the write/read rate for Architectures 3 and 5, which already have RAM accumulators, but it 
would increase the sizes of those RAMs by factor K, and this would limit the CMACs to a tiny fraction of 
each IC.  (This is moot for #5, which already is limited to K=1 for other reasons and where the CMACs 
already occupy only 2.5% of the IC.)  For architectures 1 and 2, the extra writes/reads would have  a 
severe impact on power and the RAMs would dominate the die areas of their ICs, unlike the situation 
without RAM accumulators. 

IV.  ASIC DESIGN DETAILS FOR THE SELECTED ARCHITECTURE 
A block diagram of an ASIC for Architecture 2, based on the parameters in Table 2, is shown in 

Figure 5.  Its two major components are a 600b wide by 177,500 word deep (106.5 Mb) DRAM and a 
150x150 CMAC array.  By re-using the CMAC array 378 times (re-reading data from the DRAM each 
time), it can compute all baselines for N=2025 antennas.  When operated at clock frequency f = 113 MHz, 
it can do this for 3 channels of 100 kHz each.  The DRAM is large enough to buffer 65 ms of samples 
from all antennas for one channel (bτ = 6500 samples), and the results can be read out using a 12.6 Gb/s 
serial transmitter (or several slower serial transmitters). 

The same IC could be used to support a different number of antennas and different integrating 
time, provided only that the DRAM has sufficient capacity.  Details are determined only by the way in 
which the memory is organized.  This is controlled by logic that generates the appropriate sequence of 
read and write addresses.   Although this logic could easily be included in the ASIC using negligible 
resources, locating it off-chip in programmable logic (as illustrated in Fig. 5) makes the ASIC more 
flexible and usable in a variety of projects. 

V.  SHORTER GATE LENGTH PROCESSES 
Table 4 shows how the results for Architecture 2 might change in future (and past) technologies, 

including 65 nm and 32 nm gate lengths.  The memory parameters were again obtained from CACTI [13] 
and the other parameters were scaled from their 90 nm values.   Only the number of CMACs per IC and 
the number of frequency channels processed were adjusted in order to meet the constraints.  The 
constraints were kept the same, except that the I/O rate was allowed to double (to 80 Gb/s) in 32 nm 
technology.  This predicts that, at 32 nm, the correlator could be constructed with 556 ASICs and 5.5 kW 
of dissipation per beam.  It also shows that in older technologies it would have been very difficult to 

Figure 4:  Sharing among frequency channels.  Top:  Correlator running at rate b, processing a single channel of 
bandwidth b.  Middle:  Correlator running at rate Kb processing K channels by means of an input buffer.  Each 
sample is written to and read from the buffer once.  Buffer can be separate from correlator.  Bottom:  Correlator 
running at Kb and processing K channels by means of RAM accumulators.  Requires N(2N+1)//2N ≈ N 
writes/reads per sample.  RAMs must be integrated with correlator ICs. 

N(2N+1)
cross correlators,

rate b

2N signals,
1 channel, 
bandwidth b

N(2N+1)
cross correlators,

rate Kb

2N signals,
K channels, 
each with 
bandwidth b

RAM buffer,
2Nτ�

�������

results for all 
baselines, 
bandwidth b

results for all 
baselines, 
bandwidth Kb

N(2N+1)
cross correlators,

rate Kb
w/ RAM accumulators

2N signals,
K channels, 
each with 
bandwidth b

results for all 
baselines, 
bandwidth Kb
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process all baselines in a 200 mm2 IC, and that in 250 nm CMOS it would also have been necessary to 
reduce the channel bandwidth below 100 kHz in order to achieve a feasible clock rate; the sample design 
for 250 nm would require 160,000 ICs and dissipate 848 kW. 

VI.  CONCLUSIONS 
It has been shown that minimizing power consumption in a cross correlator requires choosing an 

architecture that requires few memory operations.  This means that the use of RAM accumulators should 
be avoided, and that the matrix structure is much better than the pipeline structure.  Reasonable power 
(<35 kW/beam) for N=2000 and B=1 GHz can be achieved in 90 nm CMOS.  This is about 200 times less 
than it would be if built with the architecture and technology used for the ALMA correlator, the largest 
radio astronomy correlator to date.

Figure 5:  Block diagram of an ASIC for Architecture 2, showing how it can compute all baselines for N=2025 
antennas at 300 kHz bandwidth (K=3 channels) with 65 ms integrations.  Inputs and outputs are implemented as 
high speed serial links at achievable rates.  (DES=deserializer, SER=serializer.) 

150 x 150
CMAC
array

2b+2b input samples
16b+16b accumulators
113 MHz clock

150 x 4150 x 4

600b x 177.5K
DRAM

DESInput data:
4.86 Gbps
signal,time,channel order

150 x 4
8.1 
MHz

address
generator

1 write port and
2 independent read ports.
Depth supports 65 ms of a 

100kHz channel for 4050 signals.

read1
read2
write

SER Output data:
12.6 Gbps for 3 chan.
baseline,channel,time

4x32
113 MHz

18b x 3

For N=2025 antennas, 
the CMAC array is re-
used 378 times to 
compute all baselines.

After all data for one channel are processed, time 
is available to process additional channels . Clock 
rate is sufficient to support 300 kHz bandwidth (3 
channels at100 kHz).

implement in FPGA
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APPENDIX A:  MODELING OF SIGNAL PROCESSING ELEMENTS 

Sections A1–A3 of this Appendix explain how the technology parameters in Table 1 were 
obtained for CMACs, memories, and I/O.  Sections A4–A8 discuss the energy and power used by other 
signal processing elements that multi-antenna radio telescopes often require, including long-distance 
signal transmission, filter banks, beamformers, analog-to-digital converters, and low noise amplifiers. 

A1.  CROSS-CORRELATION 

A. GeoSTAR 
The GeoSTAR project has a correlator chip design for which a prototype has been fabricated but 

not completely tested [A1].  It is implemented in a 90 nm CMOS process and operates on a 1.0V supply.  
It includes 289 complex multiply-accumulate cells (1 each CMUL, CADD, and CWREG) operating on 
2b+2b samples.  Simulations show that each cell10 uses 1.0  mW at 1 GHz clock [A4], or 1.0 pJ per 
complex multiply-accumulate operation.   

B.  ALMA 
The ALMA correlator uses an XF style and includes ASICs that compute 4096 lags (1 each real 

multiply, real add, real register write, and delay) at 125 MHz and 2b per sample [A2].   The chips are built 
in 250 nm CMOS and operate at 1.8V.  Each lag cell includes a 20b accumulator and a 16b readout 
register. We do not have accurate power data at the chip level, but the chips are organized into 64-chip 
boards and there are 512 boards in the system.  The total power consumption of all boards is 65 kW [A3].  
That includes on-board dc-to-dc converters (but those should have efficiencies of more than 90%) and a 
few smaller control chips.  From this we find that each chip uses about 1.98W, or 484 μW per lag, or 
3.9 pJ per operation.  Each chip takes input streams for 8 antennas and sends 8 similar (delayed) output 
streams to adjacent chips on the board.  Since the number of lags far exceeds the number of I/O signals, 
we can safely assume that I/O uses a negligible fraction of the power.   

The lag cell operates on real numbers.  The equivalent complex correlation cell includes a 
complex multiply (4 real multiplies and 2 real adds), a complex add (2 real adds), a register write (2 real 
register writes), and a delay of 1 clock (2 real delays).  We make a rough guess that the overall scaling 
factor for energy is 3.5, giving 13.6 pJ per operation for an equivalent complex correlation cell. 

Next we scale the g = 250 nm gate length technology to 90 nm.  Ideally, such scaling results in 
multiplying all currents and voltages by the same factor as the gate length, resulting in a power ratio equal 
to the square of the length ratio for the same clock frequency.  But it is difficult to operate at a supply 
voltage much below 1V (as shown by the GeoSTAR design).  So we scale the voltages only by 
0.9V/1.8V, but we scale the currents by 90nm/250nm, giving a predicted energy of 2.45 pJ per complex 
correlation if the ALMA design were implemented in 90nm CMOS.  This is remarkably close to the 
nearly-equivalent value for the GeoSTAR chip, being less than a factor of 3 higher.   The ALMA design 
is about 8 years older.  Low power was a primary design consideration for GeoSTAR, but not for ALMA. 

The ALMA chip size is 8.0 mm x 8.3 mm (66.4 mm2), and each of its 4096 MAC cells contains a 
2b x 2b multiplier, 20b accumulation register, and 16b readout register.  The registers probably occupy 
most of the cell area, but if we conservatively assume that they are 50% of the area then the 
corresponding CMAC cell has 3.0 times its area (4 multipliers and 2 accumulators).  Neglecting die area 
used by control circuits and pads, this gives an area per CMAC cell of (3.0/3096)(66.4 mm2) = .04863 
mm2.  Scaling to 90 nm in proportion to g2 gives a CMAC die area of .0063028 mm2. 

C. EVLA 
The EVLA correlator also uses an XF style and is based on an ASIC [A5] built in g = 130 nm 

CMOS [A6].  It computes 2048 complex lags from real inputs at 256 MHz and 4b/sample, where each 

�������������������������������������������������������������

10 The GeoSTAR design implements a complex correlation cell as 4 real multiply-accumulators, and their literature 
counts each real MAC as a "correlation cell."  Our power per cell is thus 4 times theirs.  This includes two more 
accumulators than necessary, so our value is an overestimate. 
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cell is based on a VLBI-style architecture.  This makes it a bit difficult to compare with other complex 
correlators.   The "core" power consumption is 1.88W at 1.02V; an additional 0.7W is used by "I/O," on a 
separate 2.5V supply.  The chip accepts 16 real input signals and delivers delayed versions to 16 outputs.  
The design was frozen in 2005, and the die size is 5x8 mm [A6]. 

Based on the reported core power only, this gives an energy per complex multiply-accumulate of 
3.586 pJ.  Full complex multiplication would require 3 additional multipliers.  On the other hand, its 4b 
multiplication is about 4 times more complex than 2b multiplication; and fringe rotation circuitry could be 
deleted.  Other components, especially the accumulators, would be unchanged.   My guess is a net power 
reduction by 2/3 for 2b, full complex correlation.  Scaling to 90 nm technology at 0.9V gives a final 
scaled energy of 1.46 pJ per 2b complex correlation. 

Assuming that the accumulators in the EVLA correlation cell use 50% of its die area, the main 
multiplier uses 25%, and the fringe rotation circuitry uses 25%, the 2b/sample CMAC cell should require 
0.5625 times its area.  (The accumulators are unchanged, the multiplier is duplicated 4 times but each is 
16 times smaller, and the fringe rotation is eliminated.)  Ignoring the area used by control circuits and 
pads, and scaling by g2 to 90 nm, this gives a CMAC die area of (40mm2/2048)(0.5625)(90/130)2 = 
.005266 mm2.  This is remarkably close to the value obtained by scaling the ALMA chip. 

A2. MEMORY OPERATIONS 
We begin by considering a couple of commercially available memory chips, based on their 

published data sheets.  These may not be particularly representative choices. 
 Synchronous static RAM, Cypress CY7C1062DV33.  This is a 8Mx8b "QDR" device (double 

data rate, separate read and write ports) that operates at 1.8V and 350 MHz clock, giving an effective I/O 
rate of 700 MB/sec (reads and writes).  It draws a maximum current of 825 mA, for a power of 1.485W 
and an energy of 2.12 nJ per 8-bit word written or read. 

Synchronous dynamic RAM, Hynix H5TC1G83TFR-H9A.  This is a 128Mx8b DDR3 device, 
operating at 1.35V and 667 MHz clock, for an effective I/O rate of 1.333 GB/s.  It draws 95 mA during 
either read or write operations at this rate, giving 96 pJ per 8-bit word.  While this device is no doubt 
implemented in a more advanced technology than the SRAM above, that is not enough to explain the 
factor of 22 lower energy. 

ASIC-based signal processing discussed in this memo implements memory inside the processing 
chip rather than separately.  Detailed power estimates can be computed using the CACTI simulation tool 
[A12].  Here are two examples of results, both in 90 nm technology: 

Embedded Static RAM, 4K x 8b:  8.24 pJ per operation, negligible static power. 
Embedded Dynamic RAM, 2M x 32b (64 Mb):  1.16nJ/operation (291 pJ/byte, 146 pJ per 2b+2b 

sample), plus 0.12W of static power. 
All values in Table 1 of the main text are obtained by separate runs of CACTI for the specific 

sizes given there.  Other CACTI input parameters included: 
• Number of banks:  1 
• Ports:  1 read/write port for all SRAMS; 2 read ports and 1 write port for DRAM. 
• Temperature:  350 K (77 C). 
• Transistor types:  all optimized for low operating power, except that the RAM cells in the 

DRAM used the "COMM-DRAM" type because this produced smaller die area. 
• Interconnection type:  "conservative". 
• Wire type outside mat:  "semi-global". 

A3.  CHIP-TO-CHIP COMMUNICATION 
A 6.5 Gb/s transceiver using 13.8 mW was demonstrated in 90 nm, 1.0V CMOS [A7].  It includes 

a PLL clock multiplier and 8x serialization/deserialization.  The power is equivalent to 2.12 pJ per bit 
transferred.  It breaks down into 0.75 pJ/bit for the transmitter (SER+XMT), 1.23 pJ/bit for the receiver 
(RCV+DES), and 0.55 pJ/bit for the shared clock.  An independent transmitter and receiver (separate 
clock PLLs) would thus use 1.3 pJ/bit and 1.78 pJ/bit, respectively or 3.08 pJ/bit total.  On the other hand, 
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a chip with multiple receivers or multiple transmitters (but no transceivers) could share its clock PLL 
among the channels.  In our models, we use assume that the clock is shared between two or more modules 
in each chip.  We use the full 2.12 pJ/bit for each transmitter and each receiver, so that it includes the 
energy of the device at the other end of the link. 

The Xilinx RocketIO modules provide another data point.  According to the Xilinx Power 
Estimator (http://www.xilinx.com/ise/power_tools/license_virtex6.htm), a 5 Gbps transceiver on a Virtex 
6 "low power" device (40 nm technology) uses 0.2355 W, or 47.1 pJ/bit.  It is not clear why this is so 
much larger than the value we get from [A7]. 

A4.  LONG RANGE COMMUNICATION 
For transmission between boards within the same room, somewhat higher energies per bit might 

be needed, but that is ignored in this memo.  We assume that the same transceivers and the same energy 
per bit as for inter-chip communication on the same board. 

For longer range transmission, such as between an antenna station and a central processing 
facility, we assume high-speed serial transmission on optical links.  A digital serializer, transmitter, 
receiver, and deserializer are still needed, similar to the on-board chip-to-chip case considered above.  
The transmitter output then drives a laser modulator and diode laser, and the optical signal is received by 
a photodetector and transimpedance amplifier.  A typical COTS module containing these components and 
operating at 10 Gbps uses 1.32W [A10], or 132 pJ/bit.  We thus estimate 135 pJ/bit total for such long-
range transmissions. 

Single-mode fiber can transmit a 10 Gbps signal for 20 to 40 km.  Beyond that, optical 
amplification and possibly signal regeneration are needed.  

A5.  FILTER BANKS 
Assume a polyphase structure, with an FIR pre-filter followed by an FFT.  For K channels at 

input bandwidth B, the operation rates are 

 r1 = LB 

and 

  r2 = (B/2) log2K 

where  L  is the FIR length,  r1 is the rate of FIR element operations, and r2 is the rate of FFT butterfly 
operations.  The FIR element consists of two real multiplications, one complex addition, and one register 
write and read, which is about 1/2 of a CMAC operation.  The FFT butterfly (radix 2) consists of a 
complex multiplication, two complex additions, and two reads and writes to RAM.  The butterfly is by far 
more complex.  Typically L is small (4 to 8) and need not vary with K.  Therefore, when K>256 or so, the 
butterfly operations dominate the power use (and also the chip area).  We can then neglect the FIR 
operations for the purposes of this estimate. 

Richards et al. [A8] have described an ASIC in 90 nm CMOS that implements a 4096-channel 
spectrometer for 750 MHz bandwidth real signals.  It uses an L=4 pre-filter and a K=8192 complex FFT 
and supports a sampling rate of 1500 MHz using P=0.71 W, of which about 0.1W is static power.  
Ignoring the pre-filter, this gives an energy per butterfly of  (P–Pstatic)/r2 = 2(P–Pstatic)/(B log2 K) = 62.6 pJ. 

Interesting work using sub-threshold CMOS to build a very-low-power (but slow) FFT has also 
been reported [A9]. 

A6.  BEAMFORMERS 
A beamformer sums signals from multiple antennas with each separately delayed and weighted.  

A beamformer elementary unit consists of an adjustable delay and adder.  We consider two designs for 
the adjustable delay:  frequency domain and time domain.   

The frequency domain design applies only when the signal has already been analyzed into 
frequency channels by a filter bank.  Delay τ is then implemented by shifting the phase of each channel 
by φi = 2πfiτ, where  fi  is the center frequency of the ith channel. This is accomplished by multiplying 
each sample by exp(j2πφi).  For this to be accurate, the channelization must be fine enough so that the 
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phase change from one channel to the next is small:  |2π (fi  – fi-1) τ| � 1.   It is often desirable to weight 
the amplitudes of the antennas differently before combining, in which case we multiply by ai exp(j2πφi).  
In any case, the effort required is one complex multiplication per sample.  The product is then added into 
the partial sum from the previous antenna's beamformer element and the new partial sum is sent to the 
next beamformer element.  We assume an architecture in which the coefficients ai exp(j2πφi) have been 
pre-computed and stored in a RAM table, so the effort also includes one RAM read operation per sample.  
The complete element is than a read, complex multiply, and complex add, which is similar to a CMAC 
except that no write to an accumulator is needed.  Here, however, we assume that the coefficients are 
represented as 4b+4b numbers (more precisely than the 2b+2b samples) and that the adding chain uses 
8b+8b numbers.  At the final output of each beamformer, the result is re-quantized to 2b+2b.  By analogy 
with the CMAC (see sections I above), for which we estimated 1.0 to 2.45 pJ, we now estimate that the 
multiply and add operations of a frequency domain beamformer element use 4 pJ/sample.  From the 
embedded static RAM result in section 2 above, we use 8.24 pJ for each RAM read.  This gives 12 pJ for 
each elementary operation of a frequency domain beamformer. 

The time domain design is needed if beamforming is to be done on wide-bandwidth signals.  In 
this case, a FIFO buffer is used to implement the part of the delay that corresponds to an integer number 
of samples, and the remainder (fraction of a sample) is implemented using an FIR interpolating filter.  
The FIFO energy is that of one write and one read to a RAM.  The interpolating filter consists of two 
identical real-coefficient filters operating on the real and imaginary sample streams.  For filter length L, 
this involves 2L real multiplications and 2L real additions.  We assume 2b samples but 8b coefficients and 
8b adders.  We assume an architecture in which each coefficient is stored in a dedicated register.  Each 
real multiply-add is about 1/4 the effort of a complex multiply-add, so we can estimate the energy 
required by analogy to a CMAC (section 1 above).  The higher precision arithmetic costs about a factor of 
4 in energy, and no write back to an accumulator is needed, so we estimate that 2.0 pJ/sample is the 
energy for one stage of the filter.  Calculations done for another project [A11] show that L=18 is usually 
adequate, giving 72 pJ for the filter.  The FIFO's RAM can be a small embedded SRAM; from section A2 
above, we use 8.24 pJ (write+read, 2b+2b sample).  We thus get a total of 80 pJ for each elementary 
operation of a time-domain beamformer. 

A7.  ANALOG TO DIGITAL CONVERTERS (ADCS) 
In a survey of COTS ADCs completed in November 2009 [A13], the lowest energy per 

conversion found was 530 pJ.  This was for the National ADC08B3000, which is an 8b converter capable 
of 3 GSa/s.  Of all devices with 8b or less resolution and maximum rate less than 500 MHz, the lowest 
conversion energy was 900 pJ for the Analog Devices AD9288-100, a dual 8b device with 100 MSa/s 
maximum rate.  The lowest resolution device found was the Maxim MAX105, dual 6b at 800 MSa/s; it 
uses 1.34 nJ per conversion. 

Some recent papers suggest that better results are possible.  A 5 GSa/s, 6b flash converter in 65 
nm CMOS [A14] is reported to use 320 mW or 64 pJ per conversion (excluding output buffers and with 
no output demultiplexing).  A 100 kSa/s, 8b successive-approximation converter in 250 nm CMOS [A15] 
uses 3.1 μW or 31 pJ per conversion.  The (somewhat older) ALMA ADC, 3b at 4 GSa/s [A16][A17] 
uses 1.4W or 350 pJ per conversion; it is built using a 250 nm BiCMOS/SiGe process. 

Usually lower resolution is more appropriate for converting Gaussian noise in radio telescopes.  
Assuming a flash architecture, the energy per conversion should scale approximately as 2k for k bits.  This 
applies to the converter proper, but not necessarily to associated circuitry such as code conversion, 
demultiplexing, and output pin drivers; these should scale as k, and for many of the COTS chips these 
may be dominant.  If the ADC is embedded in an ASIC, the output pin drivers are avoided and the other 
auxiliary circuits should not dominate the power.  As a guess, we'll assume that half of the energy in a 
stand-alone ADC scales as k and half scales as  2k, leading to the following scaling factors relative to k=8:  
k=2, 0.266; k=3, 0.406; k=4, 0.562. 

We are assuming that most of our digital processing operates on complex signals, but in many 
(though not all) radio telescope designs the signals are real at the point of digitization.  We are interested 
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in a wide range of digitization bandwidths, from ~30 MHz to ~10 GHz.  For this study, we are attempting 
to normalize the energy cost to 90 nm technology. 

In view of all these considerations, we adopt the following nominal value for the conversion 
energy.  Start with the result in [A14]; scale to 90 nm technology, obtaining (90/65)64pJ = 88.6 pJ; scale 
to 3b resolution, obtaining 66.5 pJ; double to account for auxiliary circuitry, obtaining 132.9 pJ.  Since 
the power reported in [A14] excludes output buffers, this is appropriate for an ADC that is embedded in 
an ASIC with the initial stages of digital processing, such as a filter bank. 

A8.  LOW NOISE AMPLIFIERS AND OTHER ANALOG SIGNAL PROCESSING ELEMENTS 
Unlike most other processing elements, the power used by an LNA depends weakly (if at all) on 

its bandwidth.  It does depend on the operating frequency range and operating temperature (especially 
whether it is cryogenic or not), and it depends strongly on the gain required and the implementation 
technology (including not only feature size but also semiconductor type).   Here we concentrate on LNAs 
intended for room temperature operation at frequencies from VHF to low microwave (30 to 3000 MHz). 

If we assume that we want at least V volts rms at the ADC input, then the total gain from the 
antenna must be 

 
BkTR

V
G
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2

=  

where RL is the ADC's input resistance, Tsys is the system temperature and B is the bandwidth.  For V = 10 
mV, RL = 50 ohms, Tsys =1000K, and B = 100 MHz, this gives 62 dB.  At low frequencies, the ADC may 
present a larger RL to the final amplifier stage, reducing the required gain by 10 to 15 dB.  At high 
frequencies, the signal may be downconverted so that much of the gain is at IF or near baseband.  In any 
case, producing sufficient gain requires substantial power.  We concentrate on the simplest case where all 
gain is at RF and the RF band is directly digitized.  An LNA with 3 stages is usually required in order to 
get >60 dB of stable gain. 

There is a shortage of information about LNAs for which low power was a major design 
consideration.  One recent paper [A18] reports a single-stage LNA for 700-1400 MHz that uses 45 mW to 
achieve about 20 dB of gain.  Using 3 of these in cascade to achieve 60 dB thus consumes 135 mW.  So 
far we have not found anything better.  For our present models, we adopt the optimistic assumption that 
~10 mW per 20 dB stage can be achieved, giving 30 mW for everything that precedes the ADC. 
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APPENDIX B:  DETAILS OF ASIC DESIGN CONSIDERATIONS FOR EACH ARCHITECTURE 

B1.  ARCHITECTURE 1:  MATRIX WITH DEDICATED CMAC FOR EACH BASELINE 
Figure 2(a) illustrates a correlator for N antennas using Architecture 1, where each box containing 

m = n2 CMACs represents one IC.  Each signal pair has a dedicated CMAC.  The number of ICs required 
in the triangular array is (N/n)(2N/n + 1).   

For the ICs on the diagonal, only n(n+1)/2 of the CMACs are needed, so there is an  inefficiency 
that becomes significant if N/n is small.  The results in Tables 2 and 3 include this inefficiency by 
assuming that all CMACs are active.  We could do better by providing control circuitry that turns off the 
unneeded CMACs for those ICs that are on the diagonal.  In principle, it would be possible to make full 
use of all CMACs by providing the ICs with additional modes in which the CMAC array is split along the 
IC's diagonal, with separate input signals connected to the lower and upper triangles.  Along the IC's 
diagonal, each CMAC would be split into two parts, each doing autocorrelations and producing real 
results.  This would require doubling the input bandwidth, but Table 2 shows that input rate is a limiting 
constraint; without that constraint, we could operate at much higher clock rate and thus process more 
bandwidth without dissipating too much power.  Pending a detailed design to establish feasibility, we 
forego such complexities for the calculations of this memo and instead accept the inefficiency of having 
some unused CMACs. 

Because no on-chip RAM is required in Architecture 1, there is room for more CMACs than in 
the other architectures.  This is its main advantage.  Its main disadvantage (for power consumption) is that 
it requires more I/O because copies each input sample must be delivered to 2N/n+1 chips.  Fortunately, 
according to our models, the power used by that extra I/O is small compared to that used by the CMACs 
(4.2%, see Table 3).  Consequently it achieves the lowest system power consumption of all the 
architectures.  Another disadvantage is that the input rate limit requires running at a clock frequency well 
below the speed of the logic, and also well below what could be supported by the power dissipation limit.  
The result is that a relatively large number of chips is required for the N≈2000 system. 

B2.  ARCHITECTURE 2:  MATRIX WITH INPUT DATA BUFFERING 
Figure 2(a) also illustrates a correlator in Architecture 2, except that there is only chip with n2  

CMACs and each box in the figure represents its re-use for a different set of input signals.  To process all 
2N inputs, it must be re-used  x = (N/n)(2N/n + 1) times.  The same inefficiency discussed for 
Architecture 1 occurs when one of the blocks on the diagonal of the triangular matrix is being computed. 

Re-use is accomplished by having τb samples (enough for one integration) from all 2N inputs 
stored in an on-chip buffer memory, as shown in Figure B1.  The required memory size is thus 
M = 2Nτbws bits, and the clock rate must be at least  xb.   

The IC operates as follows.  On one clock, samples for 2n signals, all for the same sampling time, 
are read from the memory; n are delivered to the all CMACs in each row of the array, and n others (in 
general different but sometimes the same as the first n) are delivered to all CMACs in each column.  Each 
CMAC computes the corresponding product and adds it to its accumulator.  On the next clock, samples 
for the next sampling time of the same 2n signals are read and delivered in the same way, continuing until 
all τb samples of those 2n signals have been processed.  At that point, the results in all CMAC 
accumulators are copied to secondary registers for readout, and the accumulators are cleared.  On the 
following τb clocks, the same process is repeated using samples from a different set of 2n signals.  In 
parallel with this, the data in the secondary registers is delivered to one or more output ports.  The readout 
process could be driven by a separate clock, but if we assume that it operates on the same clock as the 
processing then to complete it within τb clocks we must read out n2/(τb) of the registers on each clock.  
Assuming that the 2n signals processed during each cycle are properly selected, then after x cycles all 
cross-correlations will have been computed. 



22 
�

The same IC can be used in systems with various values of N and τb, provided that the memory 
size M is sufficient (at least 2Nτbws) and the constraints on power and I/O rates are met.  However, the 
memory organization and the sequence of write and read addresses is a function of N and τ.  The case of 
N=2025, τ = 65 ms, b = 100 kHz, and n=150 is reported in Tables 2 and 3 and illustrated in Fig. 5.  An 
example of a possible memory organization for that case is given in Table B1.  The remainder of the 
discussion here will be based on that case. 

The memory is organized to have a width of n samples or nws bits per word, which is 600 bits for 
our case.  It has two read ports, separately addressable, connected to the row data and column data of the 
CMAC array, respectively (see Fig. 3).  There are x = 378 processing cycles, each lasting τb = 6500 
clocks.  In the first cycle, both read ports are given the same sequence of addresses, returning 6500 
samples of signals 0 through 149.  In the next cycle, samples from 0:149 are again read from port 1, but 
samples from 150:299 are read from port 2.  In the 27th cycle, we still read 0:149 from port 1 and we read 
the last group of 150 signals (3900:4049) from port 2.  This completes one column of the triangular 
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Figure B1:  Overall structure of an IC for implementing Architecture 2.
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arrangement in Fig. 2(a).  After that, the data in the first set of addresses (0:6499, covering signals 0:149) 
are no longer needed.  That section of the memory is available to be overwritten with new data.  We then 
proceed to process the next column of the triangle, which is shorter, in a similar manner.  On the last 
cycle (378), data from the last group of signals is read from both ports. 

To enable new data to be accepted during processing, one approach would be to double the 
memory size and write into one half while reading from the other.   But that can be avoided if we begin 
writing a new block of data just when the processing begins its 28th cycle, provided that the memory is 
organized as in Table B1.  If the clock rate is such that the processing just keeps up with the incoming 
data, then new data will never overwrite a buffer location until the old data in that location has been 
processed, and new data will be available when needed for the next set of cycles. 

B3.  ARCHITECTURE 3:  MATRIX WITH RAM ACCUMULATORS 
The overall structure of ICs for Architecture 3, shown in Figure B2, is similar to that for 

Architecture 2 (Fig. B1).  The difference is that Architecture 3 processes a different set of n2 input 

samples on each clock, rather than processing the same set for bτ samples (one integration) before 
proceeding to the next.  This avoids the need for a large input buffer, but instead requires that each 
CMAC have a bank of x accumulators implemented as a RAM, where x is the factor by which each 
CMAC is shared among baselines.  At the input, a small memory is still needed to hold a single sample 
for each of the 2N signals. 

Processing all baselines in each IC requires a sharing factor of x = (N/n)(2N/n+1) and n2 RAM 
accumulators each of depth x.  The total RAM is thus n2x = N(2N+n) words, which depends only weakly 
on n.  For our straw man design with N ≈ 2000, this amount of memory alone takes up more than the 200 
mm2 maximum die area.  For example, at n2 = 2500 we need 2500 memories of x = 3240 32b words.  
These memories use 510 mm2 of die area in 90 nm CMOS.  Therefore we cannot process all baselines in 
each IC.  By spreading the work across 8 ICs, we are able to find a design with n = 102 (n2 = 10404 
CMACs) where x = 100.  The RAM accumulators for this case use 135 mm2, which allows just enough 
room for the 10404 CMACs in the remaining 65 mm2.  This is the design reported in Tables 2 and 3. 

To fit the processing efficiently into 8 ICs per bandwidth segment, the arrangement of Figure B3 
is used.  This enables all cross correlations of each IC to be useful, with no redundancy.  A similar 
arrangement is possible using c1 = 2k2 ICs for any positive integer k, leading to c1 = 2, 8, 18, 32, ...  Here 
c1=8 because this is the smallest value that supports N ≈ 2000 while keeping each IC smaller than 200 
mm2.  (We could have accepted some inefficiency by using a triangular arrangement as we did for 
Architectures 1 and 2, but in those cases there were hundreds of square matrices forming the triangle, so 
the redundancy was a small fraction of the capacity.  Here, if a 4x4 triangle of 10 ICs were used, 4 halves 
of them would be redundant, which would be 20% of the capacity.)   
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Figure B2:  Overall structure of an IC for implementing Architecture 3. 
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The resulting design is somewhat of a hybrid of Architectures 1 and 3, biased as far as possible 
toward #3.  Like #1, the clock rate is limited by the input data rate.  We use 8 ICs per bandwidth segment 
(vs. 284 ICs in #1), but we can process only 24 channels or 2.4 MHz of bandwidth (vs. 276 channels or 
27.6 MHz) per segment.  The net result is a reduction in the number of ICs by about a factor of 3 
compared with Architecture 1 and the same number as in Architecture 2.  But the power consumption is 
2.6 times that of #1 and 2.2 times that of #2. 

B4.  ARCHITECTURE 4:  PIPELINE WITH DELAYS BETWEEN CMACS 
Figure B4, taken from [5], is a more complete block diagram of a pipeline correlator structure 

than Fig. 2(b). It is drawn for the case of 352 input signals, and thus could be used for N = 176 dual-
polarization antennas or for 352 single-polarization antennas.  The delays are appropriate for integrations 
of bτ = 1024 samples. 

The switches seen in Fig. B4 are a key feature to ensure that all CMACs are used efficiently.  
There are N+1 CMACs and N switches.  There are also N FIFO delays of length bτ, as well as one delay 
of length Nbτ that drives the lower inputs of all switches.  At the start of an integration, with data from 
signal 1 entering the input, all switches are in the up position.  After the first half of the signals (1 through 
N) has been received at the input, all switches are moved to the down position while bτ samples from 
signal N+1 are received.  Then the right-most switch is returned to the up position, and after bτ samples 
are received from each of the following signals the next switch to the left is returned to up.  When the last 
sample from signal 2N is received, the last switch is returned to up and we are back to the initial state, 

A B

C D

E F

G H
... ... ... ...

...
...

1 N/2 N/2+1 N N+1 3N/2

1

N/2

N/2+1

N

3N/2+1 2N

3N/2+1

2N

N+1

3N/2

...

N+1 3N/2

... ...

...

3N/2+1 2N

1

N/2
... ...

...
... ...

...

...

Figure B3:  An arrangement of 8 ICs for correlating 2N signals.  Each IC is capable of correlating 
N/2 signals (entering from the left) against N/2 other signals (entering from the bottom).  Unlabeled 
inputs in the diagram receive the same signals as the IC to the left or below.  The first four ICs (A, 
B, C, D) form a square matrix that is split along the diagonal.  The lower triangular part cross-
correlates all pairs of signals 1 through N, and the upper triangular part cross-correlates all pairs of 
signals N+1 through 2N.  The other four ICs (E, F, G, H) correlate signals 1 through N against 
signals N+1 through 2N.  To accomplish this efficiently, it is necessary for two of the ICs (A and D) 
to operate in a different mode from the others.  These accept a total of  N signals (including N/2 
signals entering from the top and from the right).  Half of its CMACs are used to correlate all pairs 
of the first N/2 signals, and the other half are used to correlate all pairs of the other N/2 signals.  The 
self-correlations (along the diagonal) require only half of a CMAC each, so they can be computed 
for both sets of signals by using only N/2 CMACs.  All 8 ICs can be identical, since they all need the 
same resources and have the same number of inputs and outputs; A and D are made to operate 
differently by asserting a mode control bit. 



25 
�

ready for signal 1 again.  For each set of bτ input samples, N+1 cross-correlations are computed in parallel 
and read out.  By the end we have computed a total of 2N(N+1) = N(2N+2) correlations, which is 1 more 
than th N(2N+1) needed, so one is redundant.  This achieves a re-use factor of x = 2N.  Note that the re-
use factor is fixed by the architecture, unlike the matrix architectures where it can be chosen by design. 

In case the N+1 CMACs and associated delays are too large to fit in one IC, it is straightforward 
to break the pipeline into as chain containing as many ICs as necessary.  To do this, four streams of 
samples must be passed between successive ICs, three in the forward direction (input, prompt, and 
delayed) and one in the feedback direction (delayed).  Thus a general purpose IC should be include 
enough I/O capacity for these signals.  For our straw man design in Architecture 4, it was just possible to 
fit the CMACs and delay memories into one 200 mm2 IC for N=2000 (see Table 2). 

In our model for the straw man design, each FIFO delay is implemented using a ws = 4 b wide by 
bτ = 6500 deep RAM.  N=2000 of these are needed.  The long (feedback) delay of length Nbτ is 
implemented as N of the same RAMs in cascade, requiring 2N of them altogether.  It might have been 
slightly more efficient to make the long delay as a single RAM.  However, we did simplify the 
implementation by using 16b wide RAMs, so that 4 of the FIFOs are implemented in each RAM, and so 
that only 2N/4 = N/2 of those 16b RAMs are needed.  We could go further by using fewer RAMs that are 
still wider, but the CACTI simulations showed that going to 32b width makes little difference in die area 
but makes the cycle time longer.  The clock rate, and hence the bandwidth (number of channels K), at 
which our ASIC can run was limited by the RAM cycle time.  K=1 (Kb = 100 kHz) requires a clock rate 
of 400 MHz, and the maximum is 695 MHz.  With a different channel bandwidth, it might have been 
possible to handle about 170 kHz per ASIC. 

The model shows that this architecture uses 115 kW/beam for the straw man correlator, 4.5 times 
that of #2, and requires 10,000 ICs, 3 times that of #2.  These are consequences of the fact that the power 
and die area are both dominated by the memories (83% and 94%, respectively, see Table 3). 

B5.  ARCHITECTURE 5:  PIPLELINE WITH RAM ACCUMULATORS 
As discussed in Section II, this architecture has the same structure as #4 except that the delays 

between CMACs are only for one sample, so they are implemented as registers that use negligible energy 
and area.  The feedback delay is of length N, so it might be implemented using a RAM, but this RAM is 
small and there is only one of them, so it is neglected in our model.  The CMACs are then shared by 
providing each with a RAM accumulator. 

We need N+1 = 2001 RAM accumulators, each of length 2N = 4000.  But these need to store wc = 

Figure B4:  Architecture 4 (pipeline with delays) block diagram, from [5].
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32 b words (vs. the 4 b words of the delays in Architecture 4).  The net result is that 256 Mb of memory is 
needed (vs. 104 Mb in #4) to support the same number of CMACs, so the memory uses an even fraction 
of the power and area (94% and 98% respectively).  Therefore, this architecture is by far the worst for 
power consumption (345 kW/beam) and IC count (30,000) in the straw man system. 

The larger memory area also means that N+1 CMACs cannot fit within the allowed 200 mm2 die 
area.  In our model, it was split among 3 identical ICs in cascade (see Section B4 for futher discussion). 

As with Architecture 4, the bandwidth was limited to K=1 channel of b=100 kHz because larger 
bandwidth would result in a clock rate that is too high for the memories. 
 


