
FPGA programming for the masses with CASPER:
A community of Radio Astronomy Instrument designers.

Jack Hickish

Cavendish Laboratory, University of Cambridge

CASPER Group, Berkeley

jack.hickish@mrao.cam.ac.uk

August 13, 2014

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

2 of 63

The Radio Astronomy Mantra: More is more

I More bandwidth

I More �eld-of-view

I More sensitivity

I More resolution

3 of 63

Beamforming & Correlation

Beam power:

∑
{i ,j}

φiφ
∗
j viv

∗
j

5 of 63

Building blocks of Radio-Astronomy DSP

I Digitize Antenna signals

I Channelize

I Combine signals from N di�erent antennas
I Summation � O(N)
I Cross-multiplication � O(N2)

I Average

I Record to disk

6 of 63

Radio-Astronomy DSP Parameters

I Number of antennas (1→∼ 1000)

I Bandwidth (100 MHz → 10 GHz)

I Frequency channels (∼ 210→∼ 230+)

I Averaging period (None → 10 s)

I Many Tb/s interconnect, many complex Tops/s

I Filtering is parallel by antenna

I Correlation/Beamforming is parallel by frequency channel

7 of 63

Radio Astronomy DSP Parameters

A large variety of Radio Astronomy instruments can be build from a
small number of parameterised

I Filters (F-Engines)

I Correlation Engines (X-Engines)

I Beamforming Engines (B-Engines)

I Interconnect

8 of 63

The generic Radio Telescope

9 of 63

CASPER

Center for Astronomy Signal Processing and Electronics Research

10 of 63

CASPER

Center for Astronomy Signal Processing and Electronics Research

Collaboration

10 of 63

CASPER

Center for Astronomy Signal Processing and Electronics Research

Collaboration

Community?

10 of 63

CASPER

�The primary goal of CASPER is to streamline and simplify the design
�ow of radio astronomy instrumentation by promoting design reuse
through the development of platform-independent, open-source

hardware and software.�

11 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures

12 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

13 of 63

BEE2 (Virtex 2 Pro) 2005�

14 of 63

iBOB (Virtex 2 Pro) 2005�

15 of 63

ROACH (Virtex 5 SX95T) 2009�

16 of 63

ROACH2 (Virtex 6 SX475T) 2010�

17 of 63

SNAP (Kintex 7 160T/325T/410T) 2014�

18 of 63

Lots of ADCs!

I 1 input, 8 bit, 5 GS/s

I 2 input, 8 bit, 1.5 GS/s

I 16 inputs, 8 bit, 250 MS/s

I 64 inputs, 12 bit, 65 MS/s

I DAC: 2 outputs, 16 bit, 1000
MS/s

I (and others, currently 11
boards listed on CASPER wiki)

19 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

20 of 63

The Arcminute Microkelvin Imager

I 10 antennas (single
polarization)

I 2 × 2.5 GHz bands (12 � 18
GHz RF)

I 4096 frequency channels

I Integration length ∼ second

I Implemented on 10 ROACH-2
boards + ethernet switch

21 of 63

AMI architecture

22 of 63

AMI architecture

Mellanox SX1012 (12 x QSFP, 48 x SFP+)

23 of 63

AMI �rmware

Two F-engines per ROACH-2 (one ADC per ZDOK interface)

24 of 63

AMI �rmware

DE-
PACKET-

ISE
Buffer

Round Robin
Arbitration

DE-
PACKET-

ISE

DE-
PACKET-

ISE

DE-
PACKET-

ISE

4 x 10 Gb/s SFP+
Bi-direcitonal

Buffer

Buffer

Buffer

READOUT
CONTROL

CROSS MULTIPLY
128 bits / FPGA clock

(16 samples)

Inherent
accumulation
within cross-
multiplication

module of 2048
samples

(~1.7 ms)

u1

x2

x1

x1 + x2

72 Mb
QDR

Memory
(off-chip)

Complex vector
accumulator, with

QDR for vector
storage.

(4096 Channels x 55
baselines)

Correlation Output
1 GbE

10 Gb Ethernet
switch

25 of 63

X-Engine �rmware

z-(M+1)

z-1

z-(M+1)

z-1

z-(M+1)

z-1z-1z-1

z-1

X

z-(M-1)z-(M-1)z-(M-1)

z-(M+1)

z-1

z-1

z-(M-1)

X

z-1 z-1 z-1 z-1

X X
Autotap Tap 1 Tap N/21 Tap N/2

Σ
M

Σ
M

Σ
M

Σ
M

26 of 63

X-Engine �rmware

A = a+ ib

B = c+ id

A′ = a′+ ib′ = (a+1)+ i(b+1)

B ′ = c ′+ id ′ = (c+1)+ i(d +1)

〈
A′∗B ′

〉
=

〈
(a′− ib′)(c ′+ id ′)

〉
= 〈[(a+1)− i(b+1)][(c+1)+ i(d +1)]〉
= 〈A∗B〉+ 〈(a+b+ c+d)− i(a−b− c+d)+1〉
= 〈A∗B〉+

〈
(a′+b+ c ′+d)− i(a′−b− c ′+d)

〉
27 of 63

X-Engine �rmware

z-1

X

z-1

z-1 z-1

z-1

X

z-1

z-1 z-1

+

z-1

z-1

DSP 1

DSP 0

z-1

X

z-1

z-1 z-1+

z-1

z-1

z-1

X

z-1

z-1 z-1+

z-1

z-1

z-1

z-1

z-1

z-1

z-1 z-1

–

COMPONENT
SEPARATION

A
1
(t=3)

A
0
(t=3)

A
1
(t=2)

A
0
(t=2)

A
1
(t=1)

A
0
(t=1)

A
1
(t=0)

A
0
(t=0)

DSP 2

DSP 3

REAL

IMAGINARY

∑A
0
*A

1

BRAM

BRAM

+

–

–

–

z-1

z-1 z-1 z-1

z-1 z-1
Not

–

Auto Tap Tap 1 Tap T
Signed → offset binary
conversion

Stagger simultaneous
inputs

+ +
+

+ +
+

∑a'-b BRAM

Unsigned correlation products

a
0
+ ib

0
a

1
+ ib

1

a
2
+ ib

2
a

3
+ ib

3

Parallel
component
adder trees

a → a'
b → b'

Serial
accumulation

Baseline order
control

per-antenna
real ± imaginary

component
accumulations

BRAM

Antenna A index

Antenna B index

(A,B) correlation pair
Readout order generation

Correlation real component
correction

Correlation imaginary component
correction

re
al

im
a

gi
n

ar
y

Signed correlation
products

X-engine Tap Chain (with unsigned multipliers)

+

∑a'+b

28 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

29 of 63

Goals of the CASPER tool�ow

FPGAs as commodity signal processing hardware � PetaOp/Second FPGA
Signal Processing for SETI and Radio Astronomy, Parsons et. al., 2006
Make FPGA design easy for CASPER users who are:

I NOT FPGA experts

I physics / astronomy undergraduates

I experimental physicists

The CASPER tool�ow (attempts to):

I Hide implementation details users don't care about (a.k.a. almost
EVERYTHING)

I Simplify DSP design for the bits users do care about

I Simplify loading design

I Simplify interacting with the design

30 of 63

Goals of the CASPER tool�ow

FPGAs as commodity signal processing hardware � PetaOp/Second FPGA
Signal Processing for SETI and Radio Astronomy, Parsons et. al., 2006
Make FPGA design easy for CASPER users who are:

I NOT FPGA experts

I physics / astronomy undergraduates

I experimental physicists

The CASPER tool�ow (attempts to):

I Hide implementation details users don't care about (a.k.a. almost
EVERYTHING)

I Simplify DSP design for the bits users do care about

I Simplify loading design

I Simplify interacting with the design

30 of 63

Goals of the CASPER tool�ow

FPGAs as commodity signal processing hardware � PetaOp/Second FPGA
Signal Processing for SETI and Radio Astronomy, Parsons et. al., 2006
Make FPGA design easy for CASPER users who are:

I NOT FPGA experts

I physics / astronomy undergraduates

I experimental physicists

The CASPER tool�ow (attempts to):

I Hide implementation details users don't care about (a.k.a. almost
EVERYTHING)

I Simplify DSP design for the bits users do care about

I Simplify loading design

I Simplify interacting with the design

30 of 63

Goals of the CASPER tool�ow

FPGAs as commodity signal processing hardware � PetaOp/Second FPGA
Signal Processing for SETI and Radio Astronomy, Parsons et. al., 2006
Make FPGA design easy for CASPER users who are:

I NOT FPGA experts

I physics / astronomy undergraduates

I experimental physicists

The CASPER tool�ow (attempts to):

I Hide implementation details users don't care about (a.k.a. almost
EVERYTHING)

I Simplify DSP design for the bits users do care about

I Simplify loading design

I Simplify interacting with the design

30 of 63

Goals of the CASPER tool�ow

FPGAs as commodity signal processing hardware � PetaOp/Second FPGA
Signal Processing for SETI and Radio Astronomy, Parsons et. al., 2006
Make FPGA design easy for CASPER users who are:

I NOT FPGA experts

I physics / astronomy undergraduates

I experimental physicists

The CASPER tool�ow (attempts to):

I Hide implementation details users don't care about (a.k.a. almost
EVERYTHING)

I Simplify DSP design for the bits users do care about

I Simplify loading design

I Simplify interacting with the design

30 of 63

What is the CASPER tool�ow?

I Simulink frontend � User creation

I Matlab middleware � peripheral management

I EDK project generation

I ISE backend

I Software Generation

31 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

32 of 63

Simulink Frontend

33 of 63

Simulink Frontend

34 of 63

Simulink Frontend

I Very intuitive

I Helps users (who probably have at least a little programming
experience) appreciate they are designing circuits

I Automatic data type propagation

I Large parametrized simulink library available

35 of 63

Simulink Frontend

Yellow blocks � interfaces to peripherals or other devices hidden by the
tool�ow

I ADCs

I DACs

I GPIO

I Memory � QDR / DRAM

I XAUI / Ethernet interfaces

I Software accessible memories / registers

I Platform con�guration

36 of 63

Simulink Frontend

37 of 63

Simulink Frontend

38 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

39 of 63

EDK Backend

I Each platform in the CASPER suite has a complete EDK template
project in the tool�ow.

I The goal of the tool�ow is to instantiate code into this project
corresponding to the user's design (i.e., netlist generated by System
Generator) and yellow block interfaces.

I After modi�cation, the complete EDK project is compiled to
bitstream

40 of 63

EDK Backend

Why EDK?

I Bus abstractions and address management

I Very tolerant speci�cation format (.mhs)
I Port width inference
I Don't have to declare signals prior to use

41 of 63

EDK Backend

Why EDK?

I Bus abstractions and address management

I Very tolerant speci�cation format (.mhs)
I Port width inference
I Don't have to declare signals prior to use

41 of 63

EDK Backend

Why EDK?

I Bus abstractions and address management

I Very tolerant speci�cation format (.mhs)
I Port width inference
I Don't have to declare signals prior to use

41 of 63

EDK Backend

Why EDK?

I Bus abstractions and address management

I Very tolerant speci�cation format (.mhs)
I Port width inference
I Don't have to declare signals prior to use

41 of 63

EDK Backend

EPB Ports

PORT epb_clk_in = epb_clk_in, DIR = I

PORT epb_data = epb_data, DIR = IO, VEC = [15:0]

PORT epb_addr = epb_addr, DIR = I, VEC = [22:0]

PORT epb_addr_gp = epb_addr_gp, DIR = I, VEC = [5:0]

...

BEGIN epb_opb_bridge

PARAMETER INSTANCE = epb_opb_bridge_inst

PARAMETER HW_VER = 1.00.a

BUS_INTERFACE MOPB = opb0

PORT OPB_Clk = epb_clk

PORT epb_data_oe_n = epb_data_oe_n

PORT epb_cs_n = epb_cs_n_int

...

END

42 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

43 of 63

Matlab Control

I MATLAB controls how EDK is modi�ed based on the contents of
the users Simulink design.

I Each yellow block triggers construction of an xps_class (i.e.
YellowBlock class) object whose attributes and methods determine
how the EDK project is modi�ed.

44 of 63

An Example Software Register

function b = xps_sw_register(blk_obj)

...

switch get_param(blk_name,'io_dir')

case 'From Processor'

b = set(b,'ip_name','opb_register_ppc2simulink');

case 'To Processor'

b = set(b,'ip_name','opb_register_simulink2ppc');

end

...

misc ports

misc_ports.user_clk = {1 'in' get(xsg_obj,'clk_src')};

b = set(b,'misc_ports',misc_ports);

...

borph_info.size = 4;

b = set(b,'borph_info',borph_info);

45 of 63

An Example Software Register

Some key attributes:

I ip_name � the pcore (module) associated with this yellow block

I misc_ports � ports connected internally in EDK
I Need only know name

I ext_ports � ports connected to FPGA IO
I Must know name, width, direction, iostandard, loc
I Refer to locs by platform independent names � e.g. zdok_0[39:0]

I borph_info � software bus connection information

46 of 63

An Example Software Register

Run class methods to modify EDK

I gen_mhs_ip � instantiate pcores, based on instance attributes

I gen_ucf_ip � add constraints to .ucf �le, based on ext_ports

Compile bitstream

47 of 63

Software Generation

I Merge borph_info (register names, sizes, etc) into the bitstream to
form a .bof �le

I .bof �le format is understood by software servers which ship as part
of CASPER board software.

I fpga = FpgaClient(<ipaddress>)
I fpga.progdev(<boffile_name>)
I fpga.write_int(<register_name>, <value>)

48 of 63

Software Generation

I Merge borph_info (register names, sizes, etc) into the bitstream to
form a .bof �le

I .bof �le format is understood by software servers which ship as part
of CASPER board software.

I fpga = FpgaClient(<ipaddress>)
I fpga.progdev(<boffile_name>)
I fpga.write_int(<register_name>, <value>)

48 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

49 of 63

Frontend

I Simulink is intuitive, but it is sloooooow (and enraging).

I Severe version compatiblity headaches.

I Poor version control support.

I Solution ????

50 of 63

Middleware

I MATLAB is not free (in beer, freedom or any other sense)

I No-one understands MATLAB OOP.

I Users will happily override methods and subvert the tool�ow's
intentions at every opportunity

I All code generation capabilities completely assume Xilinx EDK
backend

I System Generator reliance baked in at every turn.

I Some strange and arbitrary limitations

51 of 63

EDK

I Time to use Vivado (or Altera!)

I Adds a layer of wrapping on top of simple verilog/vhdl modules.
Another thing to learn.

I Some users want to play with CASPER hardware in ISE. A base
package in EDK irritates them.

I Each hardware platform base package includes a complete set of
pcores, even the platform-independent ones.

52 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

53 of 63

Solutions

I We can't solve all the problems yet.

I As a start, we can disentangle the Frontend, Middleware and
Backend.

I A �Plan�
I Keep Simulink Frontend (for now)
I Standard (plaintext) format for describing yellowblocks (which any
frontend could generate)

I Pure Python middleware
I Generate Verilog
I Encapsulate platform-independent compile information (source �les,
software addresses, port constraints) in python objects

I Pass all this information to a user-speci�ed backend (Quartus, ISE,
Vivado)

54 of 63

Solutions

I We can't solve all the problems yet.

I As a start, we can disentangle the Frontend, Middleware and
Backend.

I A �Plan�
I Keep Simulink Frontend (for now)
I Standard (plaintext) format for describing yellowblocks (which any
frontend could generate)

I Pure Python middleware
I Generate Verilog
I Encapsulate platform-independent compile information (source �les,
software addresses, port constraints) in python objects

I Pass all this information to a user-speci�ed backend (Quartus, ISE,
Vivado)

54 of 63

Solutions

I We can't solve all the problems yet.

I As a start, we can disentangle the Frontend, Middleware and
Backend.

I A �Plan�
I Keep Simulink Frontend (for now)
I Standard (plaintext) format for describing yellowblocks (which any
frontend could generate)

I Pure Python middleware
I Generate Verilog
I Encapsulate platform-independent compile information (source �les,
software addresses, port constraints) in python objects

I Pass all this information to a user-speci�ed backend (Quartus, ISE,
Vivado)

54 of 63

Solutions

I We can't solve all the problems yet.

I As a start, we can disentangle the Frontend, Middleware and
Backend.

I A �Plan�
I Keep Simulink Frontend (for now)
I Standard (plaintext) format for describing yellowblocks (which any
frontend could generate)

I Pure Python middleware
I Generate Verilog
I Encapsulate platform-independent compile information (source �les,
software addresses, port constraints) in python objects

I Pass all this information to a user-speci�ed backend (Quartus, ISE,
Vivado)

54 of 63

Solutions

I We can't solve all the problems yet.

I As a start, we can disentangle the Frontend, Middleware and
Backend.

I A �Plan�
I Keep Simulink Frontend (for now)
I Standard (plaintext) format for describing yellowblocks (which any
frontend could generate)

I Pure Python middleware
I Generate Verilog
I Encapsulate platform-independent compile information (source �les,
software addresses, port constraints) in python objects

I Pass all this information to a user-speci�ed backend (Quartus, ISE,
Vivado)

54 of 63

An Example

A Simulink generated peripherals �le (YAML), specifying everything you
need to know to put yellow blocks and the simulink netlist into a
complete design.

my_model/sw:
name: sw
fullpath: my_model/sw
tag: xps:sw_reg
mode: one value
io_dir: To Processor
...

my_model/xsg:
name: xsg
fullpath: my_model/xsg
tag: xps:xsg
hw_sys: 'KC705:xc7k325t'
clk_src: sys_clk
...

...
user_modules:

my_model:
clock: clk
ports:

- my_model_sw_user_data_out
- my_model_gpio_gateway

sources:
- test_models/my_model/sysgen

55 of 63

An Example

I A sample class for software registers.

I Commands are called against the top verilog module class, so it's (hopefully) obvious what they do.

I No more arbitrary misc_ports, ext_ports, inferred ports distinctions

I Assumes nothing about the number of modules / wishbone interfaces associated with a yellow block

I get_instance will return an existing module with the same name

56 of 63

An Example

localparam N_WB_SLAVES = 5;

localparam SLAVE_BASE = {
32'h0001000c, // sw1
32'h00010008, // sw2
32'h00010004, // sw3
32'h00010000, // sw
32'h00000000

};

localparam SLAVE_HIGH = {
32'h0001000f, // sw1
32'h0001000b, // sw2
32'h00010007, // sw3
32'h00010003, // sw
32'h0000ffff

};

wire [N_WB_SLAVES - 1:0] wbs_cyc_o;
wire [N_WB_SLAVES - 1:0] wbs_stb_o;
wire wbs_we_o;
wire [3:0] wbs_sel_o;
wire [31:0] wbs_adr_o;
wire [31:0] wbs_dat_o;
wire [32*N_WB_SLAVES - 1:0] wbs_dat_i;
wire [N_WB_SLAVES - 1:0] wbs_ack_i;
wire [N_WB_SLAVES - 1:0] wbs_err_i;

wbs_arbiter #(
.NUM_SLAVES (N_WB_SLAVES),
.SLAVE_ADDR (SLAVE_BASE),
.SLAVE_HIGH (SLAVE_HIGH),
.TIMEOUT (1024)

) wbs_arbiter_inst (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
...

);

57 of 63

An Example

I Constraints added as python objects
I Tool�ow can map these into LOCs / IOSTANDARDs
I Up to the Backend to decide how to format the constraint �les
I (A lot like migen)

def gen_constraints(self):

return [

PortConstraint('mgt_ref_clk_p', 'eth_clk_p'),

PortConstraint('mgt_ref_clk_n', 'eth_clk_n'),

PortConstraint('mgt_tx_p%d'%self.port, 'mgt_tx_p%d'%self.port),

PortConstraint('mgt_tx_n%d'%self.port, 'mgt_tx_n%d'%self.port),

PortConstraint('mgt_rx_p%d'%self.port, 'mgt_rx_p%d'%self.port),

PortConstraint('mgt_rx_n%d'%self.port, 'mgt_rx_n%d'%self.port),

ClockConstraint('mgt_reg_clk_p', name='ethclk', freq=156.25),

]
58 of 63

Final compilation steps

I Software infrastructure for register mappings kept

I bo�les can be loaded over ethernet as usual

59 of 63

Current State of A�airs

I 10 GbE, software registers, brams, GPIO and some ADCs have
been ported

I Two backends working
I PlanAhead (for Virtex 6 & ROACH boards)
I Vivado (for upcoming Kintex 7 CASPER boards, tested with KC705
dev board)

60 of 63

Outline

Radio Astronomy Instrumentation Overview

CASPER
CASPER Hardware
CASPER Hardware in Action

The CASPER Tool�ow
Goals of the CASPER Tool�ow
Simulink Frontend
EDK Backend
Matlab Control
Failings of the Tool�ow
CASPER 2.0
Lessons (IMHO)

61 of 63

Lessons

I General CASPER musings...
I Just getting everyone using the same hardware / software is half
the battle.

I Even a community of new users can be very e�ective by just sharing
what worked for them.

I Ease of use needs to be extremely good to get (and keep) the
attention of new users.

I A tool�ow can't just end at bitstream generation

I The CASPER tool�ow
I Clever tool�ows are not clever if no-one can use them
I Those who can make contributions to the tool�ow's hardware
support are EE/HDL pros, not necessarily MATLAB OOP gurus.

I No-one in CASPER will be happy until there is a viable alternative
to Simulink supported by CASPER. Suggestions?

62 of 63

Lessons

I General CASPER musings...
I Just getting everyone using the same hardware / software is half
the battle.

I Even a community of new users can be very e�ective by just sharing
what worked for them.

I Ease of use needs to be extremely good to get (and keep) the
attention of new users.

I A tool�ow can't just end at bitstream generation

I The CASPER tool�ow
I Clever tool�ows are not clever if no-one can use them
I Those who can make contributions to the tool�ow's hardware
support are EE/HDL pros, not necessarily MATLAB OOP gurus.

I No-one in CASPER will be happy until there is a viable alternative
to Simulink supported by CASPER. Suggestions?

62 of 63

Thanks

Thanks!

63 of 63

	Radio Astronomy Instrumentation Overview
	CASPER
	CASPER Hardware
	CASPER Hardware in Action

	The CASPER Toolflow
	Goals of the CASPER Toolflow
	Simulink Frontend
	EDK Backend
	Matlab Control
	Failings of the Toolflow
	CASPER 2.0
	Lessons (IMHO)

