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The Radio Astronomy Mantra: More is more

I More bandwidth

I More �eld-of-view

I More sensitivity

I More resolution

3 of 63





Beamforming & Correlation

Beam power:

∑
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Building blocks of Radio-Astronomy DSP

I Digitize Antenna signals

I Channelize

I Combine signals from N di�erent antennas
I Summation � O(N)
I Cross-multiplication � O(N2)

I Average

I Record to disk
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Radio-Astronomy DSP Parameters

I Number of antennas (1→∼ 1000)

I Bandwidth (100 MHz → 10 GHz)

I Frequency channels (∼ 210→∼ 230+)

I Averaging period (None → 10 s)

I Many Tb/s interconnect, many complex Tops/s

I Filtering is parallel by antenna

I Correlation/Beamforming is parallel by frequency channel
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Radio Astronomy DSP Parameters

A large variety of Radio Astronomy instruments can be build from a
small number of parameterised

I Filters (F-Engines)

I Correlation Engines (X-Engines)

I Beamforming Engines (B-Engines)

I Interconnect
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The generic Radio Telescope
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CASPER

Center for Astronomy Signal Processing and Electronics Research
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CASPER

Center for Astronomy Signal Processing and Electronics Research

Collaboration
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CASPER

Center for Astronomy Signal Processing and Electronics Research

Collaboration

Community?
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CASPER

�The primary goal of CASPER is to streamline and simplify the design
�ow of radio astronomy instrumentation by promoting design reuse
through the development of platform-independent, open-source

hardware and software.�
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CASPER

I Simplify
I Leverage industry standards (eg, ethernet for interconnect)
I Small number of custom [FPGA] platforms
I Optimize for ease of use (not ops/watt, ops/rack unit)
I Low knowledge-barrier for users

I Re-use
I General purpose hardware
I Modular, upgradable piecemeal
I Flexible, scalable architectures
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BEE2 (Virtex 2 Pro) 2005�
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iBOB (Virtex 2 Pro) 2005�
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ROACH (Virtex 5 SX95T) 2009�
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ROACH2 (Virtex 6 SX475T) 2010�
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SNAP (Kintex 7 160T/325T/410T) 2014�
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Lots of ADCs!

I 1 input, 8 bit, 5 GS/s

I 2 input, 8 bit, 1.5 GS/s

I 16 inputs, 8 bit, 250 MS/s

I 64 inputs, 12 bit, 65 MS/s

I DAC: 2 outputs, 16 bit, 1000
MS/s

I (and others, currently 11
boards listed on CASPER wiki)
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The Arcminute Microkelvin Imager

I 10 antennas (single
polarization)

I 2 × 2.5 GHz bands (12 � 18
GHz RF)

I 4096 frequency channels

I Integration length ∼ second

I Implemented on 10 ROACH-2
boards + ethernet switch
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AMI architecture
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AMI architecture

Mellanox SX1012 (12 x QSFP, 48 x SFP+)

23 of 63



AMI �rmware

Two F-engines per ROACH-2 (one ADC per ZDOK interface)
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AMI �rmware
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X-Engine �rmware
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X-Engine �rmware

A = a+ ib

B = c+ id

A′ = a′+ ib′ = (a+1)+ i(b+1)

B ′ = c ′+ id ′ = (c+1)+ i(d +1)

〈
A′∗B ′

〉
=

〈
(a′− ib′)(c ′+ id ′)

〉
= 〈[(a+1)− i(b+1)][(c+1)+ i(d +1)]〉
= 〈A∗B〉+ 〈(a+b+ c+d)− i(a−b− c+d)+1〉
= 〈A∗B〉+

〈
(a′+b+ c ′+d)− i(a′−b− c ′+d)

〉
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X-Engine �rmware
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Goals of the CASPER tool�ow

FPGAs as commodity signal processing hardware � PetaOp/Second FPGA
Signal Processing for SETI and Radio Astronomy, Parsons et. al., 2006
Make FPGA design easy for CASPER users who are:

I NOT FPGA experts

I physics / astronomy undergraduates

I experimental physicists

The CASPER tool�ow (attempts to):

I Hide implementation details users don't care about (a.k.a. almost
EVERYTHING)

I Simplify DSP design for the bits users do care about

I Simplify loading design

I Simplify interacting with the design
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What is the CASPER tool�ow?

I Simulink frontend � User creation

I Matlab middleware � peripheral management

I EDK project generation

I ISE backend

I Software Generation
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Simulink Frontend
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Simulink Frontend
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Simulink Frontend

I Very intuitive

I Helps users (who probably have at least a little programming
experience) appreciate they are designing circuits

I Automatic data type propagation

I Large parametrized simulink library available
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Simulink Frontend

Yellow blocks � interfaces to peripherals or other devices hidden by the
tool�ow

I ADCs

I DACs

I GPIO

I Memory � QDR / DRAM

I XAUI / Ethernet interfaces

I Software accessible memories / registers

I Platform con�guration
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Simulink Frontend
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Simulink Frontend
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EDK Backend

I Each platform in the CASPER suite has a complete EDK template
project in the tool�ow.

I The goal of the tool�ow is to instantiate code into this project
corresponding to the user's design (i.e., netlist generated by System
Generator) and yellow block interfaces.

I After modi�cation, the complete EDK project is compiled to
bitstream

40 of 63



EDK Backend

Why EDK?

I Bus abstractions and address management

I Very tolerant speci�cation format (.mhs)
I Port width inference
I Don't have to declare signals prior to use
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EDK Backend

# EPB Ports

PORT epb_clk_in = epb_clk_in, DIR = I

PORT epb_data = epb_data, DIR = IO, VEC = [15:0]

PORT epb_addr = epb_addr, DIR = I, VEC = [22:0]

PORT epb_addr_gp = epb_addr_gp, DIR = I, VEC = [5:0]

...

BEGIN epb_opb_bridge

PARAMETER INSTANCE = epb_opb_bridge_inst

PARAMETER HW_VER = 1.00.a

BUS_INTERFACE MOPB = opb0

PORT OPB_Clk = epb_clk

PORT epb_data_oe_n = epb_data_oe_n

PORT epb_cs_n = epb_cs_n_int

...

END
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Matlab Control

I MATLAB controls how EDK is modi�ed based on the contents of
the users Simulink design.

I Each yellow block triggers construction of an xps_class (i.e.
YellowBlock class) object whose attributes and methods determine
how the EDK project is modi�ed.
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An Example Software Register

function b = xps_sw_register(blk_obj)

...

switch get_param(blk_name,'io_dir')

case 'From Processor'

b = set(b,'ip_name','opb_register_ppc2simulink');

case 'To Processor'

b = set(b,'ip_name','opb_register_simulink2ppc');

end

...

misc ports

misc_ports.user_clk = {1 'in' get(xsg_obj,'clk_src')};

b = set(b,'misc_ports',misc_ports);

...

borph_info.size = 4;

b = set(b,'borph_info',borph_info);
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An Example Software Register

Some key attributes:

I ip_name � the pcore (module) associated with this yellow block

I misc_ports � ports connected internally in EDK
I Need only know name

I ext_ports � ports connected to FPGA IO
I Must know name, width, direction, iostandard, loc
I Refer to locs by platform independent names � e.g. zdok_0[39:0]

I borph_info � software bus connection information
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An Example Software Register

Run class methods to modify EDK

I gen_mhs_ip � instantiate pcores, based on instance attributes

I gen_ucf_ip � add constraints to .ucf �le, based on ext_ports

Compile bitstream
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Software Generation

I Merge borph_info (register names, sizes, etc) into the bitstream to
form a .bof �le

I .bof �le format is understood by software servers which ship as part
of CASPER board software.

I fpga = FpgaClient(<ipaddress>)
I fpga.progdev(<boffile_name>)
I fpga.write_int(<register_name>, <value>)
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Frontend

I Simulink is intuitive, but it is sloooooow (and enraging).

I Severe version compatiblity headaches.

I Poor version control support.

I Solution ????
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Middleware

I MATLAB is not free (in beer, freedom or any other sense)

I No-one understands MATLAB OOP.

I Users will happily override methods and subvert the tool�ow's
intentions at every opportunity

I All code generation capabilities completely assume Xilinx EDK
backend

I System Generator reliance baked in at every turn.

I Some strange and arbitrary limitations
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EDK

I Time to use Vivado (or Altera!)

I Adds a layer of wrapping on top of simple verilog/vhdl modules.
Another thing to learn.

I Some users want to play with CASPER hardware in ISE. A base
package in EDK irritates them.

I Each hardware platform base package includes a complete set of
pcores, even the platform-independent ones.
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Solutions

I We can't solve all the problems yet.

I As a start, we can disentangle the Frontend, Middleware and
Backend.

I A �Plan�
I Keep Simulink Frontend (for now)
I Standard (plaintext) format for describing yellowblocks (which any
frontend could generate)

I Pure Python middleware
I Generate Verilog
I Encapsulate platform-independent compile information (source �les,
software addresses, port constraints) in python objects

I Pass all this information to a user-speci�ed backend (Quartus, ISE,
Vivado)
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An Example

A Simulink generated peripherals �le (YAML), specifying everything you
need to know to put yellow blocks and the simulink netlist into a
complete design.

my_model/sw:
name: sw
fullpath: my_model/sw
tag: xps:sw_reg
mode: one value
io_dir: To Processor
...

my_model/xsg:
name: xsg
fullpath: my_model/xsg
tag: xps:xsg
hw_sys: 'KC705:xc7k325t'
clk_src: sys_clk
...

...
user_modules:

my_model:
clock: clk
ports:

- my_model_sw_user_data_out
- my_model_gpio_gateway

sources:
- test_models/my_model/sysgen
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An Example

I A sample class for software registers.

I Commands are called against the top verilog module class, so it's (hopefully) obvious what they do.

I No more arbitrary misc_ports, ext_ports, inferred ports distinctions

I Assumes nothing about the number of modules / wishbone interfaces associated with a yellow block

I get_instance will return an existing module with the same name
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An Example

localparam N_WB_SLAVES = 5;

localparam SLAVE_BASE = {
32'h0001000c, // sw1
32'h00010008, // sw2
32'h00010004, // sw3
32'h00010000, // sw
32'h00000000

};

localparam SLAVE_HIGH = {
32'h0001000f, // sw1
32'h0001000b, // sw2
32'h00010007, // sw3
32'h00010003, // sw
32'h0000ffff

};

wire [N_WB_SLAVES - 1:0] wbs_cyc_o;
wire [N_WB_SLAVES - 1:0] wbs_stb_o;
wire wbs_we_o;
wire [3:0] wbs_sel_o;
wire [31:0] wbs_adr_o;
wire [31:0] wbs_dat_o;
wire [32*N_WB_SLAVES - 1:0] wbs_dat_i;
wire [N_WB_SLAVES - 1:0] wbs_ack_i;
wire [N_WB_SLAVES - 1:0] wbs_err_i;

wbs_arbiter #(
.NUM_SLAVES (N_WB_SLAVES),
.SLAVE_ADDR (SLAVE_BASE),
.SLAVE_HIGH (SLAVE_HIGH),
.TIMEOUT (1024)

) wbs_arbiter_inst (
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
...

);
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An Example

I Constraints added as python objects
I Tool�ow can map these into LOCs / IOSTANDARDs
I Up to the Backend to decide how to format the constraint �les
I (A lot like migen)

def gen_constraints(self):

return [

PortConstraint('mgt_ref_clk_p', 'eth_clk_p'),

PortConstraint('mgt_ref_clk_n', 'eth_clk_n'),

PortConstraint('mgt_tx_p%d'%self.port, 'mgt_tx_p%d'%self.port),

PortConstraint('mgt_tx_n%d'%self.port, 'mgt_tx_n%d'%self.port),

PortConstraint('mgt_rx_p%d'%self.port, 'mgt_rx_p%d'%self.port),

PortConstraint('mgt_rx_n%d'%self.port, 'mgt_rx_n%d'%self.port),

ClockConstraint('mgt_reg_clk_p', name='ethclk', freq=156.25),

]
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Final compilation steps

I Software infrastructure for register mappings kept

I bo�les can be loaded over ethernet as usual
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Current State of A�airs

I 10 GbE, software registers, brams, GPIO and some ADCs have
been ported

I Two backends working
I PlanAhead (for Virtex 6 & ROACH boards)
I Vivado (for upcoming Kintex 7 CASPER boards, tested with KC705
dev board)
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Lessons

I General CASPER musings...
I Just getting everyone using the same hardware / software is half
the battle.

I Even a community of new users can be very e�ective by just sharing
what worked for them.

I Ease of use needs to be extremely good to get (and keep) the
attention of new users.

I A tool�ow can't just end at bitstream generation

I The CASPER tool�ow
I Clever tool�ows are not clever if no-one can use them
I Those who can make contributions to the tool�ow's hardware
support are EE/HDL pros, not necessarily MATLAB OOP gurus.

I No-one in CASPER will be happy until there is a viable alternative
to Simulink supported by CASPER. Suggestions?
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Thanks

Thanks!
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